【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面、分別是、的中點(diǎn).

1)求證:平面

2)求證:;

3)求與平面所成角的大小.

【答案】1)證明見解析;(2)證明見解析;(3.

【解析】

1)連接于點(diǎn),連接,證明四邊形為平行四邊形,可得出,再利用線面平行的判定定理即可得出結(jié)論;

2)取的中點(diǎn),連接、、,證明出平面,進(jìn)而可證明出

3)連接,證明出平面,可得出與平面所成的角為,通過(guò)解可得出的值.

1)如圖,連接于點(diǎn),連接、,則的中點(diǎn),

在三棱柱中,

、分別為、的中點(diǎn),所以,,

的中點(diǎn),,則四邊形為平行四邊形,

,平面,平面,因此,平面;

2)取的中點(diǎn),連接、、

四邊形為菱形,則,

、分別為、的中點(diǎn),,則.

為等邊三角形,的中點(diǎn),,

平面平面,平面平面,平面

平面,

平面,

,平面,

平面;

3)由(2)知,平面,所以,直線與平面所成的角為,

,,則為等邊三角形,所以,,

同理可得,,

平面,平面,

為等腰直角三角形,且,

因此,與平面所成角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,,,.

1)求證:數(shù)列是等比數(shù)列;

2)求數(shù)列的通項(xiàng)公式;

3)設(shè),,若對(duì)任意,有恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,若直線 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).

(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);

(2)求直線的極坐標(biāo)方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的相鄰兩對(duì)稱軸間的距離為,若將的圖像先向左平移個(gè)單位,再向下平移個(gè)單位,所得的函數(shù)為奇函數(shù).

1)求的解析式;

2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;

(Ⅱ)證明:當(dāng)時(shí),關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答下列問題:

1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;

2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)學(xué)生會(huì)有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗(yàn)收活動(dòng)問卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各圖中,A、B為正方體的兩個(gè)頂點(diǎn),M、NP分別為其所在棱的中點(diǎn),能得出AB//平面MNP的圖形的序號(hào)是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對(duì)的邊,且滿足.

1)求角的大;

2)若,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案