精英家教網 > 高中數學 > 題目詳情
(2012•東城區(qū)二模)若圓C的參數方程為
x=3cosθ+1
y=3sinθ
(θ為參數),則圓C的圓心坐標為
(1,0)
(1,0)
,圓C與直線x+y-3=0的交點個數為
2
2
分析:先把圓的參數方程化為普通方程,由方程可得圓心坐標,利用點直線的距離公式求出圓心到直線的距離,然后與半徑作比較,由其大小關系可得答案.
解答:解:圓C的普通方程為:(x-1)2+y2=9,
所以圓心坐標為(1,0),
圓心到直線x+y-3=0的距離d=
|1+0-3|
2
=
2
,半徑為3,且
2
<3,
所以圓與直線x+y-3=0的交點個數為2.
故答案為:2.
點評:本題考查參數方程與普通方程的互化、直線與圓的位置關系,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數列{an}滿足:An=
F(n,2)
F(2,n)
(n∈N+),若對任意正整數n,都有an≥ak(k∈N*成立,則ak的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)已知函數f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)在R上是增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)已知函數f(x)=x
1
2
,給出下列命題:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)已知函數f(x)=(a+
1
a
)lnx+
1
x
-x(a>1).
(l)試討論f(x)在區(qū)間(0,1)上的單調性;
(2)當a∈[3,+∞)時,曲線y=f(x)上總存在相異兩點P(x1,f(x1)),Q(x2,f (x2 )),使得曲線y=f(x)在點P,Q處的切線互相平行,求證:x1+x2
6
5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•東城區(qū)二模)設M(x0,y0)為拋物線C:y2=8x上一點,F為拋物線C的焦點,若以F為圓心,|FM|為半徑的圓和拋物線C的準線相交,則x0的取值范圍是( 。

查看答案和解析>>

同步練習冊答案