已知nN,且n≥2,求證:

 

答案:
解析:

證明:,

    即

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知n∈N*,且n≥2,求證:
1
n
n
-
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是不相等的兩個(gè)正數(shù),在a、b之間插入兩組數(shù)x1,x2,…xn和y1,y2,…yn(n∈N,且n≥2),使得a,x1,x2,…xn,b成等差數(shù)列,a,y1,y2,…yn,b成等比數(shù)列,則下列四個(gè)式子中,一定成立的是
①②
①②
.(填上你認(rèn)為正確的所有式子的序號(hào))
n
k=i
xi=
n(a+b)
2
;②
1
n
n
k=i
xi
=
a+b
2
ab
+(
a
-
b
2
)
2
;③
ny1y2yn
=
ab
;④
ny1y2yn
2ab
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•洛陽(yáng)一模)已知函數(shù)f(x)=
1-x
ax
+lnx(a≠0).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2]上的最大值和最小值;
(3)求證:lnn>
1
2
+
1
3
+
1
4
+…+
1
n
(n∈N﹡,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京期中題 題型:證明題

已知n∈N*,且n≥2,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省慶陽(yáng)市華池一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知n∈N*,且n≥2,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案