已知符號函數(shù)sgn=
1(x>0)
0(x=0)
-1(x<1)
則函數(shù)f(x)=sgn(ln x)-ln2x的零點個數(shù)為
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)f(x)=sgn(ln x)-ln2x的零點可化為方程sgn(ln x)-ln2x=0的根,從而求出方程的根,得到零點個數(shù).
解答: 解:函數(shù)f(x)=sgn(lnx)-ln2x的零點可化為方程sgn(lnx)-ln2x=0的根;
又∵sgn=
1(x>0)
0(x=0)
-1(x<1)
,
lnx>0
1-ln2x=0
lnx=0
0-ln2x=0
lnx<0
-1-ln2x=0

解得,x=e或x=1.
故答案為:2.
點評:本題考查了函數(shù)的零點與方程的根之間的關(guān)系,同時考查了轉(zhuǎn)化的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|x-a|(a>0),若f(x)在(-1,1)上的最小值為g(a).
(1)求g(a);
(2)證明:當(dāng)x∈[-1,1]時,恒有f(x)≤g(a)+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的偶函數(shù)f(x)滿足:對任意的x∈R,都有f(x+2)=f(x),且當(dāng)x∈[0,1〕,時f(x)=
x
,則函數(shù)g(x)=3f(x)-x,在R上的零點個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(2sin(x-
π
6
),1),
q
=(cosx,-
1
2
),函數(shù)f(x)=
p
q
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期對稱中心及單調(diào)減區(qū)間;
(Ⅱ)已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,且c=3,f(C)=0,若向量
m
=(1,sinA)與
n
=(2,sinB)共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N)
,若數(shù)列{an}滿足am=f(m)(m∈N*),數(shù)列{am}的前m項和為Sm,則S104-S96=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,f(x)表示x+1,
x
2
,3-2x中最小的一個,求函數(shù)f(x)的解析式和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=2,且對任意n∈N*,都有an+1=ban+c,其中b,c是常數(shù).
(1)若數(shù)列{an}是等差數(shù)列,且c=2,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}是等比數(shù)列,且|b|<2,當(dāng)從數(shù)列{an}中任意取出相鄰的三項,按某種順序排列成等差數(shù)列,求使數(shù)列{an}的前n項和Sn
341
256
成立的n的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+ax+3在區(qū)間[-2,2]上的最小值為g(a),求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件
3x-y-6≤0
x-y+2≥0
x、y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則
4
a
+
6
b
的最小值為( 。
A、
25
6
B、
25
3
C、
50
4
D、
50
3

查看答案和解析>>

同步練習(xí)冊答案