A. | 相離 | B. | 相交 | C. | 相切 | D. | 不能確定 |
分析 由直線l1的方程可得它經(jīng)過定點(diǎn)(m,n),結(jié)合條件可得點(diǎn)(m,n)在圓C的內(nèi)部,故有 m2+n2<r2.再求得點(diǎn)C到直線l2的距離為d>半徑r,可得直線l2與圓C的位置關(guān)系是相離.
解答 解:由直線l1:x+λy-m-λn=0 即 (x-m)+λ(y-n)=0,顯然直線l1:經(jīng)過定點(diǎn)(m,n).
再根據(jù)l1與圓C:x2+y2=r2總相交于兩不同點(diǎn),可得點(diǎn)(m,n)在圓C的內(nèi)部,∴m2+n2<r2.
再根據(jù)點(diǎn)C到直線l2的距離為d=$\frac{|0+0+{r}^{2}|}{\overline{\sqrt{{m}^{2}+{n}^{2}}}}$=$\frac{{r}^{2}}{\overline{\sqrt{{m}^{2}+{n}^{2}}}}$>$\frac{{r}^{2}}{r}$=r,
故直線l2:mx+ny=r2與圓C的位置關(guān)系是 相離,
故選:A.
點(diǎn)評 本題主要考查直線過定點(diǎn)問題,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系的判斷方法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com