【題目】已知x,y滿足約束條件,當(dāng)時,的最小值是________.若的最大值是-1,則________.
【答案】3 2
【解析】
時畫出約束條件表示的平面區(qū)域,作直線,將直線在不等式組表示的平面區(qū)域內(nèi)平移,由數(shù)形結(jié)合求得最優(yōu)解,計算的最小值;畫出約束條件表示的平面區(qū)域,作直線,將直線在不等式組表示的平面區(qū)域內(nèi)平移,由數(shù)形結(jié)合求出最優(yōu)解,計算的最大值.
當(dāng)時,畫出約束條件表示的平面區(qū)域,如圖所示;
作直線,將直線在不等式組表示的平面區(qū)域內(nèi)平移,
由數(shù)形結(jié)合知,當(dāng)直線過點(diǎn)時,直線在軸上的截距最小,此時最小,
由,解得,所以,
此時的最小值為.
畫出約束條件表示的平面區(qū)域,如圖所示;
作直線span>,將直線在不等式組表示的平面區(qū)域內(nèi)平移,
由數(shù)形結(jié)合知,當(dāng)直線過點(diǎn)時,直線在軸上的截距最大,此時最大,
由,解得,所以,,
此時的最大值為,解得.
故答案為:3,2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十五巧板,又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個大正方形(如圖1),其中標(biāo)號為的小板為等腰直角三角形,圖是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}中,a2=2,a5=128.
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=,且數(shù)列{bn}的前項(xiàng)和為Sn=360,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個口袋中裝有大小形狀完全相同的個乒乓球,其中1個乒乓球上標(biāo)有數(shù)字1,2個乒乓球上標(biāo)有數(shù)字2,其余個乒乓球上均標(biāo)有數(shù)字3,若從這個口袋中隨機(jī)地摸出2個乒乓球,恰有一個乒乓球上標(biāo)有數(shù)字2的概率是.
(1)求的值;
(2)從口袋中隨機(jī)地摸出2個乒乓球,設(shè)表示所摸到的2個乒乓球上所標(biāo)數(shù)字之積,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段是等腰的一條中位線,為線段的中點(diǎn),,.現(xiàn)將沿折起到的位置,使得.
(1)求證:;
(2)探究:在線段上是否存在一點(diǎn),使得平面,若存在,請指出點(diǎn)的位置并說明理由.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從30個個體中抽取10個個體,并將這30個個體編號00,01,…,29.現(xiàn)給出某隨機(jī)數(shù)表的第11行到第15行(見下表),如果某人選取第12行的第6列和第7列中的數(shù)作為第1個數(shù)并且由此數(shù)向右讀,則選取的前4個的號碼分別為( )
9264 | 4607 | 2021 | 3920 | 7766 | 3817 | 3256 | 1640 |
5858 | 7766 | 3170 | 0500 | 2593 | 0545 | 5370 | 7814 |
2889 | 6628 | 6757 | 8231 | 1589 | 0062 | 0047 | 3815 |
5131 | 8186 | 3709 | 4521 | 6665 | 5325 | 5383 | 2702 |
9055 | 7196 | 2172 | 3207 | 1114 | 1384 | 4359 | 4488 |
A.76,63,17,00B.16,00,02,30C.17,00,02,25D.17,00,02,07
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形為直角梯形,,,,將繞著翻折到.
(1)為上一點(diǎn),且,當(dāng)平面時,求實(shí)數(shù)的值;
(2)當(dāng)平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《朗讀者》是一檔文化情感類節(jié)目,以個人成長、情感體驗(yàn)、背景故事與傳世佳作相結(jié)合的方式,選用精美的文字,用最平實(shí)的情感讀出文字背后的價值,深受人們的喜愛.為了了解人們對該節(jié)目的喜愛程度,某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了,兩個城市各100名觀眾,得到下面的列聯(lián)表.
非常喜愛 | 喜愛 | 合計 | |
城市 | 60 | 100 | |
城市 | 30 | ||
合計 | 200 |
完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為觀眾的喜愛程度與所處的城市有關(guān)?
附參考公式和數(shù)據(jù):(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱中所有棱長都相等,、分別為、的中點(diǎn).現(xiàn)有下列四個結(jié)論:
;;
平面;異面直線與所成角的正弦值是.
其中正確的結(jié)論是( )
A.,B.,
C.,D.,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com