15.設(shè)f(x)=|x+1|+|x-2|
(])若關(guān)于x的不等式|x+1|+|x-2|≤2m有實(shí)數(shù)解,求m的取值范圍;
(2)若不等式|x+1|+|x-2|≥a+$\frac{2}{a}$恒成立,求a的取值范圍.

分析 (1)由條件利用絕對值的意義求得求得f(x)的最小值為3,可得2m≥3,由此求得m的范圍.
(2)根據(jù)題意可得3≥a+$\frac{2}{a}$,即(a-1)(a-2)≤0,由此求得a的范圍.

解答 解:(1)f(x)=|x+1|+|x-2|表示數(shù)軸上的x對應(yīng)點(diǎn)到-1、2對應(yīng)點(diǎn)的距離之和,
它的最小值為3,再根據(jù)關(guān)于x的不等式|x+1|+|x-2|≤2m有實(shí)數(shù)解,
∴2m≥3,∴m≥$\frac{3}{2}$.
(2)若不等式|x+1|+|x-2|≥a+$\frac{2}{a}$恒成立,則3≥a+$\frac{2}{a}$,即(a-1)(a-2)≤0,
求得1≤a≤2.

點(diǎn)評 本題主要考查絕對值的意義,函數(shù)的能成立問題、函數(shù)的恒成立問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知p:$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$,q:1-m≤x≤1+m,若非p是非q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),A,D,E三點(diǎn)共線,求證:存在一個(gè)實(shí)數(shù)λ,使得$\overrightarrow{AE}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x-1,x∈[-1,0],則函數(shù)f(x)的值域?yàn)閇-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}是正項(xiàng)等差數(shù)列,{an}的前n項(xiàng)和記為Sn,a1=3,a2•a3=S5
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)為bn=$\frac{1}{{S}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面四邊形ABCD是梯形,AB∥CD,M是PC的中點(diǎn),AM與平面PBD交于點(diǎn)E,且AE=EM.
(1)證明:CD=2AB;
(2)若PB=BC且平面PBC⊥平面PDC,證明:PA=AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求中心在原點(diǎn),對稱軸為坐標(biāo)軸,且滿足下列條件的雙曲線方程:
(1)雙曲線過點(diǎn)(3,9$\sqrt{2}$),離心率e=$\frac{\sqrt{10}}{3}$;
(2)雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為($\sqrt{3}$,0);
(3)與雙曲線x2-2y2=2有共同的漸近線,且經(jīng)過點(diǎn)(2,-2);
(4)過點(diǎn)P(2,-1),漸近線方程是y=±3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosx+cosy=$\frac{\sqrt{2}}{2}$,求sinx+siny的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知四邊形ABCD是直角梯形,其中A(0,-1),B(0,2),C(2,0),求D點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案