(Ⅰ)已知x+x-1=4,求x2+x-2的值;

(Ⅱ)計(jì)算的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx
(x2+1)(x2-2x+2)
.關(guān)于下列命題正確的個(gè)數(shù)是( 。
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)既有最大值又有最小值;
③函數(shù)f(x)的定義域是R,且其圖象有對(duì)稱軸;
④對(duì)于任意x∈(-1,0),f′(x)<0(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.1010pic.com/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),是否存在實(shí)數(shù)m,使得直線6x+y+m=0恰為曲線y=f(x)的切線?若存在,求出m的值;若不存在,說明理由;
(3)設(shè)定義在D上的函數(shù)y=h(x)的圖象在點(diǎn)P(x,h(x))處的切線方程為l:y=g(x),當(dāng)x≠x時(shí),若在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”.當(dāng)a=4,試問y=f(x)是否存在“類對(duì)稱點(diǎn)”?若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省大連八中高考適應(yīng)性考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知f(x)是定義在R上的奇函數(shù),且f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x>0時(shí)總有xf′(x)<f(x)成立,則不等式f(x)>0的解集為( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}

查看答案和解析>>

同步練習(xí)冊(cè)答案