【題目】第96屆(春季)全國糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.交易會(huì)開始前,展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬人)與餐廳所用原材料數(shù)量t(袋),得到如下數(shù)據(jù):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù)x(萬人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出t關(guān)于x的線性回歸方程 ;
(Ⅱ)已知購買原材料的費(fèi)用C(元)與數(shù)量t(袋)的關(guān)系為 投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會(huì)大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入﹣原材料費(fèi)用).
(參考公式: = , )
【答案】解:(Ⅰ)由數(shù)據(jù),求得 , , 10×25+12×29=1273,
102+122=510,
= ,
,
∴t關(guān)于x的線性回歸方程為 .
(Ⅱ)由(Ⅰ)中求出的線性回歸方程,當(dāng)x=14時(shí), ,
即預(yù)計(jì)需要原材料34.2袋,
∵
∴,若t<35,利潤L=600t﹣(300t+20)=300t﹣20,
當(dāng)t=34時(shí),利潤Lmax=300×34﹣20=10180元;
若t≥35,利潤L=600×34.2﹣290t=20520﹣290t,
當(dāng)t=35時(shí),利潤Lmax=20520﹣290×35=10370元;
綜上所述,該餐廳應(yīng)購買35袋原材料,才能獲得最大利潤,最大利潤是10370元
【解析】(1)由題意求出 , , , ,代入公式求值,從而得到回歸直線方程;(2)由(Ⅰ)中求出的線性回歸方程,當(dāng)x=14時(shí), ,根據(jù)分段函數(shù)C討論其利潤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a2 , a5 , a11成等比數(shù)列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過點(diǎn)(1, ),離心率為 ,點(diǎn)A為橢圓C的右頂點(diǎn),直線l與橢圓相交于不同于點(diǎn)A的兩個(gè)點(diǎn)P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) ⊥ =0時(shí),求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對(duì)角線BD折成直二面角后的圖形如圖所示,若E為線段BC的中點(diǎn),則直線AE與平面ABD所成角的余弦為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) |﹣ |,其中﹣3≤a≤1.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥1;
(Ⅱ)對(duì)于任意α∈[﹣3,1],不等式f(x)≥m的解集為空集,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點(diǎn),D是B1C1的中點(diǎn).
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求直線A1B和平面BB1C1C所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3:
(1)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=x+b,當(dāng)a=3時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在拋物線y2=x上,點(diǎn)Q在圓(x+ )2+(y﹣4)2=1上,則|PQ|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com