【題目】已知橢圓C: + =1(a>b>0)經(jīng)過(guò)點(diǎn)(1, ),離心率為 ,點(diǎn)A為橢圓C的右頂點(diǎn),直線l與橢圓相交于不同于點(diǎn)A的兩個(gè)點(diǎn)P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) ⊥ =0時(shí),求△OPQ面積的最大值.
【答案】解:(Ⅰ)由題意知:且 ,可得: ,
橢圓C的標(biāo)準(zhǔn)方程為
(Ⅱ)當(dāng)直線l的斜率不存在時(shí),設(shè)l:x=m,與 ,聯(lián)立得 .
由于 ,得 ,解得 或m=2(舍去).
此時(shí) ,△OPQ的面積為
當(dāng)直線l的斜率存在時(shí),由題知k≠0,設(shè)l:y=kx+m,與 聯(lián)立,
整理得:(4k2+1)x2+8kmx+4(m2﹣1)=0.由△>0,得4k2﹣m2+1>0;
且 ,
由于 ,得: .
代入(*)式得:12k2+5m2+16km=0,即 或m=﹣2k(此時(shí)直線l過(guò)點(diǎn)A,舍去).
,
點(diǎn)O到直線l的距離為:
S△OPQ= ,將 代入得: ,
令 0<p<1, ,由y=﹣9p2﹣7p+16,
在(0,1)上遞減,
∴0<y<16,故 ,
綜上(S△OPQ)max=
【解析】(Ⅰ)將點(diǎn)代入橢圓方程,根據(jù)橢圓的離心率公式,即可求得a和b的值,即可求得橢圓方程;(Ⅱ)分類(lèi)討論.當(dāng)直線l的斜率不存在時(shí),求得P,Q點(diǎn)坐標(biāo),由 ⊥ =0即可求得m的值,求得丨PQ丨,即可求得△OPQ面積;
當(dāng)直線l的斜率存在,且不為0,代入橢圓方程,利用韋達(dá)定理,弦長(zhǎng)公式及向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)函數(shù)的單調(diào)性即可求得△OPQ面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代一部重要的數(shù)學(xué)著作,書(shū)中有如下問(wèn)題:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊.齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里,駕馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬.何日相逢,”其大意為:“現(xiàn)在有良馬和駑馬同時(shí)從長(zhǎng)安出發(fā)到齊去,已知長(zhǎng)安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”現(xiàn)有三種說(shuō)法:①駑馬第九日走了93里路;②良馬四日共走了930里路;③行駛5天后,良馬和駑馬相距615里. 那么,這3個(gè)說(shuō)法里正確的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=1,且滿(mǎn)足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 則a2017= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)p(x)=lnx+x﹣4,q(x)=axex(a∈R).
(Ⅰ)若a=e,設(shè)f(x)=p(x)﹣q(x),試證明f′(x)存在唯一零點(diǎn)x0∈(0, ),并求f(x)的最大值;
(Ⅱ)若關(guān)于x的不等式|p(x)|>q(x)的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線E: ﹣ =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , |F1F2|=6,P是E右支上一點(diǎn),PF1與y軸交于點(diǎn)A,△PAF2的內(nèi)切圓在邊AF2上的切點(diǎn)為Q,若|AQ|= ,則E的離心率是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用計(jì)算機(jī)產(chǎn)生120個(gè)隨機(jī)正整數(shù),其最高位數(shù)字(如:34的最高位數(shù)字為3,567的最高位數(shù)字為5)的頻數(shù)分布圖如圖所示,若從這120個(gè)正整數(shù)中任意取出一個(gè),設(shè)其最高位數(shù)字為d(d=1,2,…,9)的概率為P,下列選項(xiàng)中,最能反映P與d的關(guān)系的是( )
A.P=lg(1+ )
B.P=
C.P=
D.P= ×
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第96屆(春季)全國(guó)糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.交易會(huì)開(kāi)始前,展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬(wàn)人)與餐廳所用原材料數(shù)量t(袋),得到如下數(shù)據(jù):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù)x(萬(wàn)人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出t關(guān)于x的線性回歸方程 ;
(Ⅱ)已知購(gòu)買(mǎi)原材料的費(fèi)用C(元)與數(shù)量t(袋)的關(guān)系為 投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為600元,多余的原材料只能無(wú)償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會(huì)大約有14萬(wàn)人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)L=銷(xiāo)售收入﹣原材料費(fèi)用).
(參考公式: = , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù) 在(0,2)上存在兩個(gè)極值點(diǎn),則a的取值范圍是( )
A.(﹣∞,﹣ )
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )∪(﹣ ,﹣ )
D.(﹣e,﹣ )∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2x﹣ )+2cos2x﹣1(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知f(A)= ,b,a,c成等差數(shù)列,且 =9,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com