已知
a
b
是兩個單位向量,且|k
a
+
b
|=
3
|
a
-k
b
|,若
a
,
b
的夾角為60°,則實數(shù)k=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用向量的定義和數(shù)量積的運算性質(zhì)即可得出.
解答: 解:∵
a
,
b
是兩個單位向量,
a
,
b
的夾角為60°,
|
a
|=|
b
|
=1,
a
b
=1×1×cos60°=
1
2

∵|k
a
+
b
|=
3
|
a
-k
b
|,
k2
a
2
+
b
2
+2k
a
b
=
3
a
2
+k2
b
2
-2k
a
b

化為k2+1+k=3(1+k2-k),即k2-2k+1=0.
解得k=1.
故答案為:1.
點評:本題考查了向量的定義和數(shù)量積的運算性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文科)在一次體檢中,測得四位同學的視力分別為4.6,4.7,4.8,4.9,若隨機從中抽取2位同學,則他們的視力恰好相差0.2的概率為( 。
A、
1
4
B、
1
3
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐P-ABC的高PO為h,點D為側(cè)棱PC的中點,PO與BD所成角的余弦值為
2
3
,則正三棱錐P-ABC的體積為( 。
A、
3
3
8
h3
B、
2
3
8
h3
C、
3
8
h3
D、
3
3
4
h3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an+1,則Sn=( 。
A、Sn=
1
2
3
2
n-1
B、Sn=
1
2
3
2
n+1
C、Sn=
1
2
[(
3
2
n-1]
D、Sn=(
3
2
n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖,其中俯視圖是一個半圓,內(nèi)接一個直角邊長是
2
的等腰直角三角形,側(cè)視圖下方是一個正方形,則該幾何體的體積是(  )
A、2+
3
B、2+
π
3
C、4+
π
3
D、4+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax2+bx+c,x≥-1
f(-x-2),x<-1
,在其圖象上點(1,f(1))處的切線方程為y=2x+1,則圖象上點(-3,f(-3))處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當PD=
2
,AB=2且E為PB的中點時,求四面體P-ADE體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+alnx,g(x)=(a+1)x(a≠-1),H(x)=f(x)-g(x).
(1)若f(x)的單調(diào)減區(qū)間是(0,1),求實數(shù)a的值;
(2)若函數(shù)f(x),g(x)在區(qū)間[1,2]上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實數(shù)a的取值范圍;
(3)α,β是函數(shù)H(x)的兩個極值點,α<β,β∈(1,e].求證:對任意的x1,x2∈[α,β],不等式|H(x1)-H(x2)|<1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當a>1時,
4
a-1
+a的最小值為
 

查看答案和解析>>

同步練習冊答案