已知函數(shù)f(x)=(-ax2-2x+a)•ex,(a∈R).
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)把a(bǔ)=-2代入f(x),解不等式f′(x)>0,f′(x)<0即可;
(2)f(x)在[-1,1]上單調(diào)遞減,即f′(x)≤0在[-1,1]上恒成立,對(duì)a進(jìn)行分類(lèi)討論即可解出a的取值范圍.
解答:解:(1)a=-2時(shí),f(x)=(2x2-2x-2)•ex,定義域?yàn)镽.
f′(x)=)=(2x2-2x-2)•ex+(4x-2)•ex=2(x-1)(x+2)•ex
由f′(x)>0得x<-2或x>1,由f′(x)<0,得-2<x<1,
∴f(x)的單調(diào)遞增區(qū)間為(-∞,-2),(1,+∞),單調(diào)遞減區(qū)間為(-2,-1).
(2)f′(x)=(-ax2-2x+a)•ex+(-2ax-2)•ex=-[ax2+2(a+1)x+2-a]•ex
令g(x)=-ax2-2(a+1)x+a-2.
①當(dāng)a=0時(shí),g(x)=-2x-2,在(-1,1)內(nèi)g(x)<0,f′(x)<0,
函數(shù)f(x)在[-1,1]上單調(diào)遞減.
②當(dāng)a>0時(shí),g(x)=-ax2-2(a+1)x+a-2是二次函數(shù),其對(duì)稱(chēng)軸為x=-1-<-1,
當(dāng)且僅當(dāng)g(-1)≤0,即a≤0時(shí),f′(x)≤0,此時(shí)無(wú)解.
③當(dāng)a<0時(shí),g(x)=-ax2-2(a+1)x+a-2是二次函數(shù),
當(dāng)且僅當(dāng).∴-2≤a<0時(shí),f′(x)≤0,
此時(shí)函數(shù)f(x)在[-1,1]上單調(diào)遞減.
綜上,實(shí)數(shù)a的取值范圍是[-2,0].
點(diǎn)評(píng):本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,對(duì)可導(dǎo)函數(shù)f(x)來(lái)說(shuō),f′(x)≤0(不總為0)是f(x)在某區(qū)間上單調(diào)遞減的充要條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案