【題目】如圖,直角中,,,D,E分別是AB,BC邊的中點(diǎn),沿DE將折起至,且.
(1)求四棱錐的體積;
(2)求證:平面平面ACF.
【答案】(1) (2)證明見解析
【解析】
(1),折疊過程中保持與平面垂直,因此只要作于M,就可證是四棱錐的高,通過計(jì)算可得體積;
(2)取AF,CF的中點(diǎn)分別為N,Q,連接DN,NQ,EQ,可證,再證平面ACF,然后可得另一線面垂直,從而有面面垂直.
(1)解:作于M,∵中位線,,,,∴平面CEF,∴,,∴平面ACED.
又,∴,∴,
(2)證明:設(shè)AF,CF的中點(diǎn)分別為N,Q,連接DN,NQ,EQ,則,又,
∴是平行四邊形
,是中點(diǎn),則,
又由(1)得平面,平面,∴,
,∴平面ACF,
∴平面ACF,又平面ADF,
∴平面平面ACF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,集合,,滿足.
①每個(gè)集合都恰有5個(gè)元素
②
集合中元素的最大值與最小值之和稱為集合的特征數(shù),記為,則 的值不可能為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過70小時(shí)的周數(shù)有35周,超過70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時(shí)) | |||
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.若商家安裝了3臺(tái)光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關(guān)系數(shù)公式,參考數(shù)據(jù),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知設(shè)函數(shù).
(1)若,求極值;
(2)證明:當(dāng),時(shí),函數(shù)在上存在零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代名著《張丘建算經(jīng)》中記載:“今有方錐,下廣二丈,高三丈.欲斬末為方亭,令上方六尺.問:斬高幾何?”大致意思是:有一個(gè)正四棱錐下底邊長為二丈,高三丈,現(xiàn)從上面截去一段,使之成為正四棱臺(tái),且正四棱臺(tái)的上底邊長為六尺,則截去的正四棱錐的高是多少.如果我們把求截去的正四棱錐的高改為求剩下的正四棱臺(tái)的體積,則該正四棱臺(tái)的體積是(注:1丈尺)( )
A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計(jì)該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(jià)(元)與銷量(萬份)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對(duì)應(yīng)數(shù)據(jù):
售價(jià)(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;
(3)若從表中五組銷量數(shù)據(jù)中隨機(jī)抽取兩組,記其中銷量超過6萬份的組數(shù)為,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)E是棱的中點(diǎn).
(1)求證:平面ABC;
(2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本:與軸交于點(diǎn),過點(diǎn)作直線,交軸于點(diǎn),點(diǎn)滿足,的軌跡為.
(1)求的方程;
(2)已知點(diǎn),點(diǎn),過作斜率為的直線交于,兩點(diǎn),延長,分別交于,兩點(diǎn),記直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于⊙O:x2+y2=1來說,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線OP與⊙O的交點(diǎn)為A,SP=AP的長度(如圖).
(1)直線2x+2y+1=0在圓內(nèi)部分的點(diǎn)到⊙O的最長距離為_____;
(2)若線段MN上存在點(diǎn)T,使得:
①點(diǎn)T在⊙O內(nèi);
②點(diǎn)P∈線段MN,都有ST≥SP成立.則線段MN的最大長度為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com