1.求使1+2+3+4+5+…+n>100成立的最小自然數(shù)n的值,并畫出程序框圖.

分析 分析題目中的要求,發(fā)現(xiàn)這是一個累加型的問題,用循環(huán)結(jié)構(gòu)來實現(xiàn),累加的初始值為1,累加值每一次增加1,退出循環(huán)的條件是累加結(jié)果>100,把握住以上要點不難得到程序框圖.

解答 解:程序框圖如下:

點評 可利用循環(huán)語句來實現(xiàn)數(shù)值的累加(乘)常分如下步驟:①觀察S的表達式分析,循環(huán)的初值、終值、步長②觀察每次累加的值的通項公式③在循環(huán)前給累加器和循環(huán)變量賦初值,累加器的初值為0,累乘器的初值為1,環(huán)變量的初值同累加(乘)第一項的相關(guān)初值④在循環(huán)體中要先計算累加(乘)值,如果累加(乘)值比較簡單可以省略此步,累加(乘),給循環(huán)變量加步長⑤輸出累加(乘)值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標系中,已知A(-1,1),B(2,4),圓C:x2-2ax+y2-4y+a2+$\frac{51}{25}$=0.
(1)若a=0,求圓C截直線AB所得的弦長;
(2)若圓C與直線AB相交于P、Q兩點,且CP⊥CQ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(2014)=3,則f(2015)的值是(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.拋物線y=-$\frac{1}{4}{x}^{2}$的焦點到準線的距離為( 。
A.2B.1C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知AB=2,AC=2,D為BC中點,則$\overrightarrow{AD}$$•\overrightarrow{BC}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-3x2+(6-a)ax+b.
(1)若a=1時,f(x)<0在R上恒成立,求b的取值范圍;
(2)若不等式f(x)>0的解集是{x|1<x<2},求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個幾何體的三視圖如圖所示,其俯視圖為一個半圓和一個等腰梯形,則該幾何體的體積為( 。
A.$\frac{\sqrt{2}}{3}$π+$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{2}}{3}$π+$\frac{\sqrt{6}}{2}$C.$\frac{2\sqrt{2}}{3}$π+$\frac{\sqrt{6}}{4}$D.$\frac{2\sqrt{2}}{3}$π+$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,AC=20,∠A=90°,S△ABC=120,則AB=( 。
A.6B.12C.24D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=mx2-mx-6+m,若對于m∈[1,3],f(x)<0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習冊答案