記max{x,y}=
x, x≥y
y, x<y
,min{x,y}=
y, x≥y
x, x<y
,設(shè)
a
,
b
為平面向量,則(  )
A、min{|
a
+
b
|,|
a
-
b
|}≤min{|
a
|,|
b
|}
B、min{|
a
+
b
|,|
a
-
b
|}≥min{|
a
|,|
b
|}
C、max{|
a
+
b
|2,|
a
-
b
|2}≤|
a
|2+|
b
|2
D、max{|
a
+
b
|2,|
a
-
b
|2}≥|
a
|2+|
b
|2
考點(diǎn):向量的加法及其幾何意義,向量的減法及其幾何意義
專題:平面向量及應(yīng)用
分析:
a
b
平移到同一起點(diǎn),根據(jù)向量加減法的幾何意義可知,
a
+
b
a
-
b
分別表示以
a
,
b
為鄰邊所做平行四邊形的兩條對(duì)角線,再根據(jù)選項(xiàng)內(nèi)容逐一判斷.
解答: 解:對(duì)于選項(xiàng)A,取
a
b
,則由圖形可知,根據(jù)勾股定理,結(jié)論不成立;
對(duì)于選項(xiàng)B,取
a
,
b
是非零的相等向量,則不等式左邊min{|
a
+
b
|,|
a
-
b
|}=
0
,顯然,不等式不成立;
對(duì)于選項(xiàng)C,取
a
b
是非零的相等向量,則不等式左邊max{|
a
+
b
|2,|
a
-
b
|2}=|
a
+
b
|2=4|
a
|2
,而不等式右邊=|
a
|2+|
b
|2=2|
a
|2
,故C不成立,D選項(xiàng)正確.
故選:D.
點(diǎn)評(píng):本題在處理時(shí)要結(jié)合著向量加減法的幾何意義,將
a
,
b
,
a
+
b
a
-
b
放在同一個(gè)平行四邊形中進(jìn)行比較判斷,在具體解題時(shí),本題采用了排除法,對(duì)錯(cuò)誤選項(xiàng)進(jìn)行舉反例說明,這是高考中做選擇題的常用方法,也不失為一種快速有效的方法,在高考選擇題的處理上,未必每一題都要寫出具體解答步驟,針對(duì)選擇題的特點(diǎn),有時(shí)“排除法”,“確定法”,“特殊值”代入法等也許是一種更快速,更有效的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=e-x上點(diǎn)P的切線平行于直線2x+y+1=0,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線x-2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長為2
3
,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=4x與曲線y=x3在第一象限內(nèi)圍成的封閉圖形的面積為( 。
A、2
2
B、4
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={2,3,4},N={0,2,3,5},則M∩N=( 。
A、{0,2}
B、{2,3}
C、{3,4}
D、{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

鈍角三角形ABC的面積是
1
2
,AB=1,BC=
2
,則AC=( 。
A、5
B、
5
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥1
,則目標(biāo)函數(shù)z=x+2y的最小值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( 。
A、34B、55C、78D、89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}的各項(xiàng)均為正數(shù)的數(shù)列,其前n項(xiàng)和為Sn,若2Sn=an2+an(n≥1),且a1、a3、a7成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)令bn=2 a,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn+4=2b.

查看答案和解析>>

同步練習(xí)冊(cè)答案