試驗(yàn)測(cè)得四組(x,y)的值為(1,3),(3,2),(4,5),(8,6),則x與y之間的回歸直線方程必然經(jīng)過(guò)定點(diǎn)( 。
A、(0,1)
B、(4,4)
C、(3.5,4.5)
D、(3,5)
考點(diǎn):線性回歸方程
專(zhuān)題:概率與統(tǒng)計(jì)
分析:求出樣本中心點(diǎn)的坐標(biāo),即可得到結(jié)果.
解答: 解:由題意可知
.
x
=
1+3+4+8
4
=4,
.
y
=
3+2+5+6
4
=4.
回歸直線方程經(jīng)過(guò)(4,4).
故選:B.
點(diǎn)評(píng):本題考查回歸直線方程的求法與應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2,x∈[-2,4]的奇偶性為( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、既不是奇函數(shù)也不是偶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等比數(shù)列,a1=1,公比q=
2
,Sn為{an}的前n項(xiàng)和,Qn為數(shù)列{bn}的前n項(xiàng)和,若(
2
+1-x)n=b1+b2x1+b3x2+…+bn+1xn.記Tn=
17Sn-S2n
Qn+1
,n∈N*,設(shè)Tn0為數(shù)列{Tn}的最大項(xiàng),則n0=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=a2-x(a>0且a≠1)的圖象過(guò)定點(diǎn)A,若點(diǎn)A的坐標(biāo)滿足方程mx+ny=1(m,n>0),則
1
m
+
1
n
的最小值為( 。
A、3+2
2
B、3+
2
2
C、3+
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2
1
2
a3,a1成等差數(shù)列,則
a2+a 3+a4
a3+a4+a5
的值為( 。
A、
1-
5
2
B、
5
+1
2
C、
5
-1
2
D、
5
+1
2
5
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x>0,x2+ax+1<0”的否定是(  )
A、?x≤0,x2+ax+1<0
B、?x>0,x2+ax+1≥0
C、?x>0,x2+ax+1<0
D、?x>0,x2+ax+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin420°-tan
π
3
=( 。
A、-
3
3
2
B、
3
3
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a>b,給出下列不等式:(1)
1
a
1
b
;(2)a3>b3;(3)a2+1>b2+1;(4)2a>2b.其中成立的不等式有( 。
A、(3)(4)
B、(2)(3)
C、(2)(4)
D、(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知傾斜角為
π
4
的直線f經(jīng)過(guò)點(diǎn)P(1,1).
(I)寫(xiě)出直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與x2+y2=4相交于A,B兩點(diǎn),求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案