如圖,在直三棱柱中,,點(diǎn)D是AB的中點(diǎn),
求證:(1); (2)平面
(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
解析試題分析:(1)證明兩條直線垂直,只需證明直線和平面垂直,由題知面,從而,又,面,從而;(2)證明直線和平面平行,一般有兩種方法,其一利用直線和平面平行的判定定理(在平面內(nèi)找一條直線和已知直線平行);其二利用面面平行的性質(zhì)(如果兩個(gè)平面平行,則一個(gè)平面內(nèi)的任意一條直線和另一個(gè)平面平行),設(shè),連接,則∥,從而說(shuō)明平面.
試題解析:(1)在直三棱柱ABC-A1B1C1中,C1C⊥平面ABC,又由于AC平面ABC,所以CC1⊥AC.
又因?yàn)锳C⊥BC BC平面BCC1B1 CC1平面BCC1B1 BC1CC1=C,所以AC⊥平面BCC1B1,又因?yàn)锽C1平面BCC1B1 所以AC⊥BC1 5分
(2)設(shè)BC1B1C=O,連OD,則O為BC1中點(diǎn),又∵D是AB中點(diǎn),∴OD是△ABC1的中位線,∴OD∥AC1,,又∵OD平面B1CD1, AC1平面B1CD ∴AC1∥平面B1CD 10分
考點(diǎn):1、證明兩條直線垂直的方法;2、直線和平面平行的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是等邊三角形,,,將沿折疊到的位置,使得.
(1)求證:;
(2)若,分別是,的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(如圖,在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線AC與BD相交于點(diǎn)O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點(diǎn).
(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
將棱長(zhǎng)為的正方體截去一半(如圖甲所示)得到如圖乙所示的幾何體,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).
(1)求證:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,G為PD的中點(diǎn),E是AB的中點(diǎn).
(Ⅰ)求證:AG∥平面PEC;
(Ⅱ)求點(diǎn)G到平面PEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中,,,為的中點(diǎn),分別在線段上,且交于,把沿折起,如下圖所示,
(1)求證:平面;
(2)當(dāng)二面角為直二面角時(shí),是否存在點(diǎn),使得直線與平面所成的角為,若存在求的長(zhǎng),若不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com