過點A(-1,10)且被圓x2+y2-4x-2y-20=0截得的弦長為8的直線方程是______.
圓x2+y2-4x-2y-20=0化為標準方程為(x-2)2+(y-1)2=25
當所求直線的斜率存在時,設為k,則直線方程為y-10=k(x+1),即kx-y+k+10=0
∴圓心(2,1)到直線的距離d=
|2k-1+k+10|
k2+1
=
|3k+9|
k2+1

又∵弦長為8,圓半徑r=5,∴弦心距d=3,
|3k+9|
k2+1
=3

k=-
4
3

∴此時直線方程為4x+3y-26=0
當所求直線的斜率不存在時,方程為x+1=0,此時圓心(2,1)到直線的距離為3,弦長為8
綜上所述,所求直線的方程為4x+3y-26=0或x=-1.
故答案為:4x+3y-26=0或x=-1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點A(-1,10)且被圓x2+y2-4x-2y-20=0截得的弦長為8的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

求過點A(1,10)且被圓截得的弦長為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(-1,10)且被圓截得的弦長為8的直線方程是     ▲      

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省運城市臨猗中學高二(上)周考數(shù)學試卷(8)(理科)(解析版) 題型:填空題

過點A(-1,10)且被圓x2+y2-4x-2y-20=0截得的弦長為8的直線方程是   

查看答案和解析>>

同步練習冊答案