已知隨機變量ξ的分布列如表所示,則D(ξ)=
 
ξ012
p
1
2
a
1
4
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:利用分布列的性質(zhì)求出a,然后直接使用公式求期望、方差.
解答: 解:由題意可知
1
2
+a+
1
4
=1
,解得a=
1
4

Eξ=0×
1
2
+1×
1
4
+2×
1
4
=
3
4
,
Dξ=(0-
3
4
2×
1
2
+(1-
3
4
2×
1
4
+(2-
3
4
2×
1
4
=
11
16

故答案為:
11
16
點評:本題主要考查離散型隨機變量的分布和數(shù)學(xué)期望、方差等基礎(chǔ)知識,熟記期望、方差的公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C的對邊分別為a,b,c且sin2A-cosA=0.
(1)求角A的大。
(2)若b=
3
,sinB=
3
sinC,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)
a-i
1-2i
是純虛數(shù),則實數(shù)a的值為( 。
A、2
B、-
1
2
C、-2
D、-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的定義域:y=(x-1) 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a1x+a2x2+a3x3+…+a2nx2n(n∈N*),且a1,a2,a3,一組成等差數(shù)列{an},又a1=1,f(-1)=2n;
(Ⅰ)求an
(Ⅱ)數(shù)列{bn}滿足bn=
1
anan+1
,其前n項和為Tn,若Tn
m
6
對n∈N*恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別是雙曲線x2-my2=1(m>0)的左、右焦點,P為雙曲線左支上任意一點,若
|
PF2
|2
|
PF1
|
的最小值為8,則雙曲線的離心率的取值范圍為( 。
A、(1,3]
B、(0,3]
C、(1,2]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xlnx(x>0)
(1)求函數(shù)f(x)的最小值;
(2)設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;
(3)當(dāng)x>0時,證明:ex>f′(x)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=3+5cosθ
y=5sinθ
(θ是參數(shù)),P是曲線C與y軸正半軸的交點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點P與曲線C只有一個公共點的直線l的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點B、C在橢圓
x2
3
+y2=1上,頂點A是橢圓的一個焦點,且BC邊經(jīng)過橢圓的另外一個焦點,則△ABC的周長是( 。
A、2
3
B、4
3
C、6
D、3

查看答案和解析>>

同步練習(xí)冊答案