已知,,直線與函數(shù)、的圖象都相切,且與函數(shù)的圖象的切點的橫坐標為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中是的導函數(shù)),求函數(shù)的最大值;
(Ⅲ)當時,求證:.
(Ⅰ)直線的方程為. .
(Ⅱ)當時,取最大值,其最大值為2.
(Ⅲ)
解析試題分析:(Ⅰ),.∴直線的斜率為,且與函數(shù)的圖象的切點坐標為. ∴直線的方程為. 又∵直線與函數(shù)的圖象相切,
∴方程組有一解. 由上述方程消去,并整理得
①
依題意,方程①有兩個相等的實數(shù)根,
解之,得或 .
(Ⅱ)由(Ⅰ)可知,
. .
∴當時,,當時,.
∴當時,取最大值,其最大值為2.
(Ⅲ) .
, , .
由(Ⅱ)知當時, ∴當時,,
. ∴
考點:導數(shù)的幾何意義,直線方程,利用導數(shù)研究函數(shù)的極值(最值),不等式證明問題。
點評:典型題,切線的斜率,等于在切點的導函數(shù)值。利用導數(shù)研究函數(shù)的極值,一般遵循“求導數(shù)、求駐點、研究導數(shù)的正負、確定極值”,利用“表解法”,清晰易懂。不等式的證明問題,往往通過構(gòu)造函數(shù),通過研究函數(shù)的最值達到目的。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象在點處的切線斜率為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設關于x的不等式≥的解集為M,且集合,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在與時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求c的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在(1,2)上是增函數(shù),在(0,1)上是減函數(shù)。
求的值;
當時,若在內(nèi)恒成立,求實數(shù)的取值范圍;
求證:方程在內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當時,判斷和的大小,并說明理由;
(3)求證:當時,關于的方程:在區(qū)間上總有兩個不同的解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)對任意,在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求切于點的切線方程;
(3)求函數(shù)在上的最大值與最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com