已知函數(shù)的圖象在點處的切線斜率為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側(cè)?若存在,求出點A的坐標(biāo);若不存在,說明理由.
(1)
(2)方程有且只有一個實根.
(3)存在唯一點使得曲線在點附近的左、右兩部分分別
位于曲線在該點處切線的兩側(cè).
解析試題分析:解法一:(Ⅰ)因為,所以,
函數(shù)的圖象在點處的切線斜率.
由得:. 4分
(Ⅱ)由(Ⅰ)知,,令.
因為,,所以在至少有一個根.
又因為,所以在上遞增,
所以函數(shù)在上有且只有一個零點,即方程有且只有一
個實根. 7分
(Ⅲ)證明如下:
由,,可求得曲線在點處的切
線方程為,
即. 8分
記
,
則. 11分
(1)當(dāng),即時,對一切成立,
所以在上遞增.
又,所以當(dāng)時,當(dāng)時,
即存在點,使得曲線在點A附近的左、右兩部分分別位于曲線
在該點處切線的兩側(cè). 12分
(2)當(dāng),即時,
時,;時,;
時,.
故在上單調(diào)遞減,在上單調(diào)遞增.
又,所以當(dāng)時,;當(dāng)時,,
即曲線在點附近的左、右兩部分都位于曲線在該點處切線的
同側(cè). 13分
(3)當(dāng),即
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在點處的切線與函數(shù)的圖象在點處的切線重合.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若,滿足,求實數(shù)的取值范圍;
(Ⅲ)若,試探究與的大小,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 函數(shù)
(1)已知任意三次函數(shù)的圖像為中心對稱圖形,若本題中的函數(shù)圖像以為對稱中心,求實數(shù)和的值
(2)若,求函數(shù)在閉區(qū)間上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的導(dǎo)數(shù)為實數(shù),.
(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;
(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點個數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,直線與函數(shù)、的圖象都相切,且與函數(shù)的圖象的切點的橫坐標(biāo)為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中是的導(dǎo)函數(shù)),求函數(shù)的最大值;
(Ⅲ)當(dāng)時,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com