【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù), 得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取 2 組,用剩下的 4 組數(shù)據(jù)求 線性回歸方程,再用被選取的 2 組數(shù)據(jù)進(jìn)行檢驗(yàn);
(Ⅰ)求選取的 2 組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程 ;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人, 則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
附:對(duì)于一組數(shù)據(jù), ,…,( ,其回歸直線 的斜率和截距的最小二乘估計(jì)分別為
, .
【答案】(1)
(2).
(3)小組所得線性回歸方程是理想的.
【解析】分析:從組數(shù)據(jù)種選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,利用古典概型概率公式可得結(jié)果;(Ⅱ)由所給數(shù)據(jù)求得,由公式求得,再由求得,從而可得結(jié)果;(Ⅲ)利用所求回歸方程,當(dāng)時(shí),當(dāng)時(shí),分別求出對(duì)應(yīng)的的值,即可判斷所得線性回歸方程是否理想.
詳解:(Ⅰ)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件,因?yàn)閺?組數(shù)據(jù)種選取2組數(shù)據(jù)共有15種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種,所以
(Ⅱ)由數(shù)據(jù)求得由公式求得,再由求得
所以關(guān)于的線性回歸方程為
(Ⅲ)當(dāng)時(shí),
同樣,當(dāng)時(shí),
所以,該小組所得線性回歸方程是理想的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)令,可將已知三角函數(shù)關(guān)系轉(zhuǎn)換成代數(shù)函數(shù)關(guān)系,試寫出函數(shù)的解析式及定義域;
(2)求函數(shù)的最大值;
(3)函數(shù)在區(qū)間內(nèi)是單調(diào)函數(shù)嗎?若是,請(qǐng)指出其單調(diào)性;若不是,請(qǐng)分別指出其單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間(不需要證明).
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn), ,且圓心在直線上.
(1)求圓的方程;
(2)過點(diǎn)的直線與圓交于兩點(diǎn),問在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機(jī)對(duì)入院50人進(jìn)行了問卷調(diào)查,得到了如表的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由.
參考格式:,其中.
下面的臨界值僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶一中為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)隊(duì)的得分高于隊(duì)的得分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中政教處為了調(diào)查學(xué)生對(duì)“一帶一路”的關(guān)注情況,在全校組織了“一帶一路知多少”的知識(shí)問卷測(cè)試,并從中隨機(jī)抽取了12份問卷,得到其測(cè)試成績(jī)(百分制)的莖葉圖如下:.
(1)寫出該樣本的中位數(shù),若該校共有3000名學(xué)生,試估計(jì)該校測(cè)試成績(jī)?cè)?/span>70分以上的人數(shù);
(2)從所抽取的70分以上的學(xué)生中再隨機(jī)選取4人,記表示測(cè)試成績(jī)?cè)?/span>80分以上的人數(shù),求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)Z1 , Z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)復(fù)數(shù)z=Z1Z2對(duì)應(yīng)的點(diǎn)在二、四象限的角平分線上,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象( )
A. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
B. 所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
C. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
D. 所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變), 再將所得的圖像向左平移個(gè)單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com