11.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范圍.

分析 (1)利用正弦定理以及兩角和與差的三角函數(shù)化簡acosC+ccosA=2bcosA,結(jié)合三角形的內(nèi)角和,求解A即可.
(2)轉(zhuǎn)化sinB+sinC為B的正弦函數(shù),條公交的范圍,推出相位的范圍,然后求解函數(shù)的最值.

解答 解:(1)因?yàn)閍cosC+ccosA=2bcosA,所以sinAcosC+sinCcosA=2sinBcosA,
即sin(A+C)=2sinBcosA.
因?yàn)锳+B+C=π,所以sin(A+C)=sinB.
從而sinB=2sinBcosA.…(4分)
因?yàn)閟inB≠0,所以cosA=$\frac{1}{2}$.因?yàn)?<A<π,所以A=$\frac{π}{3}$.…(7分)
(2)sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=sinB+sin$\frac{2π}{3}$cosB-cos$\frac{2π}{3}$sinB
=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$).…(11分)
因?yàn)?<B<$\frac{2π}{3}$,所以$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{5π}{6}$.
所以sinB+sinC的取值范圍為($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].…(14分)

點(diǎn)評 本題考查正弦定理以及兩角和與差的三角函數(shù),三角形的解法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知有如下等式:
①tan5°tan15°+tan15°tan70°+tan5°tan70°=a;
②tan10°tan25°+tan25°tan55°+tan10°tan55°=a;
③tan15°tan35°+tan35°tan40°+tan15°tan40°=a;
④tan20°tan45°+tan45°tan25°+tan20°tan25°=a.
(1)觀察以上式子的規(guī)律并用特殊值求出a的值;
(2)歸納出一般的等式并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某三棱錐的三視圖如圖所示,該三棱錐的體積是32;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C1:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)G到焦點(diǎn)的距離為3,且點(diǎn)G在圓C:x2+y2=9上.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一個焦點(diǎn)與拋物線C1的焦點(diǎn)重合,且離心率為$\frac{1}{2}$.直線l:y=kx-4交橢圓C2于A、B兩個不同的點(diǎn),若原點(diǎn)O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,過雙曲線C:x2-$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)F作x軸的垂線l,則l與雙曲線C的兩條漸近線所圍成的三角形的面積是$4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AB,AC是⊙O的切線,ADE是⊙O的割線,求證:BE•CD=BD•CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)m∈R,過定點(diǎn)A的動直線x+my-1=0和過定點(diǎn)B的動直線mx-y-2m+3=0交于點(diǎn)P(x,y),則|PA|•|PB|的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),將曲線C上各點(diǎn)的縱坐標(biāo)都壓縮為原來的一半,得到曲線C1,直線l與曲線C1交于點(diǎn)A、B,O為坐標(biāo)原點(diǎn).
(1)求曲線C1的直角坐標(biāo)方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某中學(xué)剛搬遷到新校區(qū),學(xué)?紤],若非住校生上學(xué)路上單程所需時間人均超過20分鐘,則學(xué)校推遲5分鐘上課.為此,校方隨機(jī)抽取100個非住校生,調(diào)查其上學(xué)路上單程所需時間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)從統(tǒng)計學(xué)的角度說明學(xué)校是否需要推遲5分鐘上課;
(Ⅲ)若從樣本單程時間不小于30分鐘的學(xué)生中,隨機(jī)抽取2人,求恰有一個學(xué)生的單程時間落在[40,50]上的概率.

查看答案和解析>>

同步練習(xí)冊答案