設(shè)t∈R,[t]表示不超過(guò)t的最大整數(shù).則在平面直角坐標(biāo)系xOy中,滿足[x]2+[y]2=13的點(diǎn)P(x,y)所圍成的圖形的面積為
 
考點(diǎn):進(jìn)行簡(jiǎn)單的演繹推理
專題:推理和證明
分析:根據(jù)方程可得對(duì)于x,y≥0時(shí),求出x,y的整數(shù)解,可得|[x]|可能取的數(shù)值為2,則可以確定x的范圍,進(jìn)而得到對(duì)應(yīng)的y的范圍,求出面積即可.
解答: 解:由題意可得:方程:[x]2+[y]2=13,
當(dāng)x,y≥0時(shí),[x],[y]的整數(shù)解為(2,3),所以此時(shí)x可能取的數(shù)值為:2.
所以當(dāng)|[x]|=2時(shí),2≤x<3,或者-2≤x<-1,|[y]|=3,3≤y<4,或者-3≤y<-2,圍成的區(qū)域是8個(gè)單位正方形,
所以滿足[x]2+[y]2=13的點(diǎn)P(x,y)所成的圖形面積為8.
故答案為:8.
點(diǎn)評(píng):本題考查探究性問(wèn)題,是創(chuàng)新題,考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

春節(jié)期間,某商場(chǎng)進(jìn)行促銷活動(dòng),方案是:顧客每買滿200元可按以下方式摸球兌獎(jiǎng):箱內(nèi)裝有標(biāo)著數(shù)字20,40,60,80,1 00的小球各兩個(gè),顧客從箱子里任取三個(gè)小球,按三個(gè)小球中最大數(shù)字等額返還現(xiàn)金(單位:元),每個(gè)小球被取到的可能性相等.
(Ⅰ)若有三位顧客各買了268元的商品,求至少有二個(gè)返獎(jiǎng)不少于80元的概率;
(Ⅱ)在(Ⅰ)的條件下,設(shè)返獎(jiǎng)不少于80元的人數(shù)為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+|x-a|(a∈R).
(1)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?請(qǐng)說(shuō)明理由;
(2)若0<a<1,求函數(shù)f(x)在[-1,1]上的最大值;
(3)求證:對(duì)任意的實(shí)數(shù)a,存在x0,恒有f(x0)≠0,并求出符合該特征的x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)定義在R上的奇函數(shù),且它的圖象關(guān)于直線x=1對(duì)稱,若函數(shù)f(x)=
x
,(0<x≤1),則f(-5.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,并滿足:an=2an+1-an+2,a7=4-a3,則S9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程
x|x|
16
+
y|y|
9
=λ(λ<0)的曲線即為函數(shù)y=f(x)的圖象,對(duì)于函數(shù)y=f(x),下列命題中正確的是
 
.(請(qǐng)寫出所有正確命題的序號(hào))
①函數(shù)y=f(x)在R上是單調(diào)遞減函數(shù);
②函數(shù)y=f(x)的值域是R;
③函數(shù)y=f(x)的圖象不經(jīng)過(guò)第一象限;
④函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱;
⑤函數(shù)F(x)=4f(x)+3x至少存在一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某品牌生產(chǎn)企業(yè)的三個(gè)車間在三月份共生產(chǎn)了4800件產(chǎn)品,企業(yè)質(zhì)檢部門要對(duì)這批產(chǎn)品進(jìn)行質(zhì)檢,他們用分層抽樣的方法,從一,二,三車間分別抽取的產(chǎn)品數(shù)為a,b,c,若a,b,c構(gòu)成等差數(shù)列,則第二車間生產(chǎn)的產(chǎn)品數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)某種電子元件的使用壽命進(jìn)行跟蹤調(diào)查,所得樣本的頻率分布直方圖如圖所示,由圖可知,這一批電子元件中使用壽命在100~300h的電子元件的數(shù)量與使用壽命在300~600h的電子元件的數(shù)量的比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:復(fù)數(shù)z=
1
2
+
3
2
i,它的共軛復(fù)數(shù)為
.
z
,則
.
z
2=( 。
A、-
1
2
+
3
2
i
B、
1
2
-
3
2
i
C、-
1
2
-
3
2
i
D、
1
2
+
3
2
i

查看答案和解析>>

同步練習(xí)冊(cè)答案