【題目】已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0,f(x)=log3(x+3)﹣a,則不等式|f(x)|<1的解集為

【答案】(﹣6,6)
【解析】解:f(x)為定義在R上的奇函數(shù), 當(dāng)x≥0,f(x)=log3(x+3)﹣a,
∴f(0)=log33﹣a=0,
解得a=1;
∴x≥0時(shí),f(x)=log3(x+3)﹣1,

令f(x)=1,即log3(x+3)﹣1=1,
解得x=6,根據(jù)奇函數(shù)的性質(zhì)畫出函數(shù)圖象,如圖所示;
結(jié)合函數(shù)f(x)的圖象,得出不等式|f(x)|<1的解集為(﹣6,6).
所以答案是:(﹣6,6).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解指、對(duì)數(shù)不等式的解法的相關(guān)知識(shí),掌握指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對(duì)數(shù)不等式的解法規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)銳角△ABC的三個(gè)內(nèi)角為A,B,C,其中角B的大小為 ,則cosA+sinC的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)的單調(diào)遞增區(qū)間;

2當(dāng)時(shí),設(shè)函數(shù),函數(shù),

恒成立,求實(shí)數(shù)的取值范圍;

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查喜愛運(yùn)動(dòng)是否和性別有關(guān),我們隨機(jī)抽取了50名對(duì)象進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

喜愛運(yùn)動(dòng)

不喜愛運(yùn)動(dòng)

合計(jì)

男性

5

女性

10

合計(jì)

50

若在全部50人中隨機(jī)抽取2人,抽到喜愛運(yùn)動(dòng)和不喜愛運(yùn)動(dòng)的男性各一人的概率為
附:

P(K2≥k)

0.05

0.01

0.001

k

3.841

6.635

10.828

K2=
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜愛運(yùn)動(dòng)與性別有關(guān)?說明你的理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求證:1是函數(shù)的極值點(diǎn);

(Ⅱ)設(shè)是函數(shù)的導(dǎo)函數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下的列聯(lián)表:

喜歡該項(xiàng)運(yùn)動(dòng)

不喜歡該項(xiàng)運(yùn)動(dòng)

總計(jì)

40

20

60

20

30

50

總計(jì)

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

參照附表,以下結(jié)論正確的是( )

A. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)語(yǔ)的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

C. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

D. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,連結(jié)棱長(zhǎng)為2cm的正方體各面的中心得一個(gè)多面體容器,從頂點(diǎn)A處向該容器內(nèi)注水,注滿為止.已知頂點(diǎn)B到水面的高度h以每秒1cm勻速上升,記該容器內(nèi)水的體積V(cm3)與時(shí)間T(S)的函數(shù)關(guān)系是V(t),則函數(shù)V(t)的導(dǎo)函數(shù)y=V′(t)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案