(本題滿(mǎn)分14分)
已知函數(shù)f(x)=,若數(shù)列,滿(mǎn)足,, ,
(1)求的關(guān)系,并求數(shù)列的通項(xiàng)公式;
(2)記, 若恒成立.求的最小值.
(1) bn= ()n-1+.(2) m的最小值為。
【解析】
試題分析:(1)根據(jù)遞推關(guān)系和已知的所求解的,構(gòu)造那個(gè)結(jié)構(gòu)特點(diǎn)的關(guān)系式,進(jìn)而得到結(jié)論。(2)利用第一問(wèn)的結(jié)論得到數(shù)列{bn-}是首項(xiàng)b1-=,公比為的等比數(shù)列,進(jìn)而得到通項(xiàng)公式,并求解和式。
解:(1)∵,∴.………2
又,∴,.………3
∴代入化簡(jiǎn)得,………4 ∴
∴,………6∴數(shù)列{bn-}是首項(xiàng)b1-=,公比為的等比數(shù)列,
∴bn-= ()n-1,bn= ()n-1+.………………8
(2)Sn==…10
∴=≤=,………12∴的最大值為,又≤m,
∴m的最小值為………………………14
考點(diǎn):本試題主要考查了數(shù)列通項(xiàng)公式和前n項(xiàng)和的求解的綜合運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于分式遞推式,采用取倒數(shù)的方法得到遞推關(guān)系式,并能結(jié)合分組求和的思想得到數(shù)列的 前n項(xiàng)和問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線(xiàn)段AB上,且滿(mǎn)足AM=2MB,試在線(xiàn)段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過(guò)作垂直軸于,動(dòng)點(diǎn)滿(mǎn)足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線(xiàn)的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com