(2005•南匯區(qū)一模)在△ABC中三邊之比a:b:c=2:3:
19
,則△ABC中最大角=
3
3
分析:根據(jù)三邊的比,設出三邊的長,利用大邊對大角的原則,判斷出△ABC中最大角,進而利用余弦定理求得cosC的值,進而求得C.
解答:解:依題意可設a=2t,b=3t,c=
19
t,
依據(jù)大邊對大角的原則,判斷出C為最大角
由余弦定理可知 cosC=
a2+b2-c2
2ab
=-
1
2

∴C=
3

故答案為:
3
點評:本題主要考查了余弦定理的應用.涉及已知三邊求三角形的內(nèi)角的問題,常用余弦定理來解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2005•南匯區(qū)一模)已知數(shù)列{an},an=2•(
1
3
)n
,把數(shù)列{an}的各項排成三角形狀,如圖所示.記A(m,n)表示第m行,第n列的項,則A(10,8)=
2•(
1
3
)53
2•(
1
3
)53

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•南匯區(qū)一模)在數(shù)列{an}中a1=-13,且3an=3an+1-2,則當前n項和sn取最小值時n的值是
20
20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•南匯區(qū)一模)某自來水廠的蓄水池存有400噸水,水廠每小時可向蓄水池中注水60噸,同時蓄水池又向居民小區(qū)不間斷供水,t小時內(nèi)供水總量為120
6t
噸,(0≤t≤24)
(1)從供水開始到第幾小時時,蓄水池中的存水量最少?最少水量是多少噸?
(2)若蓄水池中水量少于80噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的24小時內(nèi),有幾小時出現(xiàn)供水緊張現(xiàn)象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•南匯區(qū)一模)復數(shù)z=
5
3-4i
的共軛復數(shù)
.
z
=
3
5
-
4
5
i
3
5
-
4
5
i

查看答案和解析>>

同步練習冊答案