已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,直線(xiàn)l的參數(shù)方程為
x=tcosα
y=tsinα
(t為參數(shù),0≤α<π),圓C的極坐標(biāo)方程為ρ2-8ρcosθ+12=0.若tanα=
1
2
,直線(xiàn)l與圓C交于A、B兩點(diǎn),求|OA|+|OB|的值.
考點(diǎn):參數(shù)方程化成普通方程,簡(jiǎn)單曲線(xiàn)的極坐標(biāo)方程
專(zhuān)題:選作題,坐標(biāo)系和參數(shù)方程
分析:把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程,把直線(xiàn)l的參數(shù)方程代入圓的方程,由韋達(dá)定理可得t1+t2=|OA|+|OB|=8cosα.再由條件求得cosα的值,可得|OA|+|OB|的值.
解答: 解:圓C的極坐標(biāo)方程為ρ2-8ρcosθ+12=0,化為直角坐標(biāo)方程為x2+y2-8x+12=0即(x-4)2+y2=4,
表示以(4,0)為圓心、半徑等于2的圓.
把直線(xiàn)l的參數(shù)方程
x=tcosα
y=tsinα
代入圓的方程,可得 t2-8cosαt+12=0.
由韋達(dá)定理可得t1•t2=12>0,t1+t2=|OA|+|OB|=8cosα.
再由直線(xiàn)l的傾斜角為α,且tanα=
1
2
,可得cosα=
2
5
5
,∴|OA|+|OB|=8×
2
5
5
=
16
5
5
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,參數(shù)的幾何意義,韋達(dá)定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為考察高中生的性別與喜歡數(shù)學(xué)課程之間的關(guān)系,在某學(xué)校高中生中隨機(jī)抽取了250名學(xué)生,得到如圖的二維條形圖.
(1)根據(jù)二維條形圖,完形填空2×2列聯(lián)表:
合計(jì)
喜歡數(shù)學(xué)課程
不喜歡數(shù)學(xué)課程
合計(jì)
(2)對(duì)照如表,利用列聯(lián)表的獨(dú)立性檢驗(yàn)估計(jì),請(qǐng)問(wèn)有多大把握認(rèn)為“性別與喜歡數(shù)學(xué)有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知式子(2x2+
1
x
5
(Ⅰ)求展開(kāi)式中含
1
x2
的項(xiàng);
(Ⅱ)若(2x2+
1
x
5的展開(kāi)式中各二項(xiàng)式系數(shù)的和比(
x
+
2
x
n的展開(kāi)式中的第三項(xiàng)的系數(shù)少28,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)△ABC的外接圓的切線(xiàn)AE與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,∠BAC的平分線(xiàn)與
BC交于點(diǎn)D.求證:
(1)∠ADE=∠DAC
(2)ED2=EC•EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
1-2x
2x-a
是奇函數(shù).
(Ⅰ)求f(x)的解析式,并判斷f(x)的單調(diào)性(不必證明);
(Ⅱ)解不等式f(2x)+f(1-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)計(jì)算法程序框圖,要求輸入自變量x的值,輸出函數(shù)f(x)=
πx-5   (x>0)
0           (x=0)
πx+3    (x<0)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間四邊形ABCD,BC=BD,AC=AD,E是CD邊的中點(diǎn).在AE上的一個(gè)動(dòng)點(diǎn)P,討論BP與CD是否存在垂直關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銳角α,β滿(mǎn)足tanα,tanβ是方程x2-3
3
x+4=0的兩個(gè)根,則α+β的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

極坐標(biāo)系中,已知圓心C(3,
π
6
),半徑r=1.
(1)求圓的直角坐標(biāo)方程;
(2)若直線(xiàn)
x=-1+
3
2
t
y=
1
2
t
(t為 參數(shù)),與圓交于A,B兩點(diǎn),求弦AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案