11.已知f(x)是定義在R上的偶函數(shù),當(dāng)x∈(-∞,0)時,f(x)=x-x2,則當(dāng)x∈(0,+∞)時,f(x)的表達式為( 。
A.x+x2B.-x+x2C.-x-x2D.x-x2

分析 設(shè)x>0,則-x<0,代入已知式子可得f(-x)=-x2-x,由偶函數(shù)的性質(zhì)可得f(x)=f(-x)=-x2-x,即得答案.

解答 解:由題意,設(shè)x>0,則-x<0,代入已知式子可得f(-x)=-(-x)2+(-x)=-x2-x,
又因為y=f(x)是定義在R上的偶函數(shù),
所以f(x)=f(-x)=-x2-x,
故選:C.

點評 本題考查函數(shù)解析式的求解及常用方法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2)=f(2-x),當(dāng)x∈[3,4]時,f(x)=x-2,則( 。
A.f(1)>f(0)B.f(1)>f(4)C.$f({\frac{5}{2}})>f(1)$D.$f({\frac{5}{2}})>f(2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過直線x+y=0上一點P作圓C:(x+1)2+(y-5)2=2的兩條切線l1,l2,A,B為切點,當(dāng)CP與直線y=-x垂直時,∠APB=( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.三個數(shù)324,243,135的最大公約數(shù)27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x,y滿足條件:$\left\{\begin{array}{l}7x-5y-23≤0\\ x+7y-11≤0\\ 4x+y+10≥0\end{array}\right.$,求:
(1)4x-3y的最小值;
(2)$\frac{x-y+1}{x+5}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.集合A={x|ax=2},B={3},且A⊆B,則實數(shù)a的值為(  )
A.0或$\frac{3}{2}$B.0或$\frac{2}{3}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=$\frac{1}{1+x}$,則f (l)+f(2)+f(3)+f(4)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+
…+f($\frac{1}{2016}$)=2015$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.作邊長為1的正三角形的內(nèi)切圓,在這個圓內(nèi)做新的內(nèi)接正三角形,在新的正三角形內(nèi)再作內(nèi)切圓,如此繼續(xù)下去,所有這些圓的面積之和為$\frac{π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.循環(huán)小數(shù)0.2$\stackrel{••}{34}$化為最簡分?jǐn)?shù)$\frac{a}$,則a+b=51712..

查看答案和解析>>

同步練習(xí)冊答案