11.已知集合A={x|x2+(2-a)x+1=0,x∈R},若A⊆{x|x>0},求實數(shù)a的取值范圍.

分析 令f(x)=x2+(2-a)x+1,由于A⊆{x|x>0},可得△<0,或$\left\{\begin{array}{l}{△=(2-a)^{2}-4=0}\\{-\frac{2-a}{2}>0}\end{array}\right.$或$\left\{\begin{array}{l}{△=(2-a)^{2}-4>0}\\{f(0)>0}\\{-\frac{2-a}{2}>0}\end{array}\right.$,解出即可.

解答 解:令f(x)=x2+(2-a)x+1,
∵A⊆{x|x>0},
∴△<0,$\left\{\begin{array}{l}{△=(2-a)^{2}-4=0}\\{-\frac{2-a}{2}>0}\end{array}\right.$或$\left\{\begin{array}{l}{△=(2-a)^{2}-4>0}\\{f(0)>0}\\{-\frac{2-a}{2}>0}\end{array}\right.$,
解得0<a<4,a=4或a>4.
∴實數(shù)a的取值范圍是[0,+∞).

點評 本題考查了二次函數(shù)的圖象與性質(zhì)、集合之間的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.求值:($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014=$\frac{1}{2}-\frac{\sqrt{3}}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,已知a=4,b=x,A=60°,如果解該三角形有兩解,則( 。
A.x>4B.0<x≤4C.x≤$\frac{8\sqrt{3}}{3}$D.4<x<$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sinx•cosx+cos2x
(1)求最小正周期f(x)的最大值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(3,2),$\overrightarrow$=(5,7),利用計算器,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ(精確到1°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}的前n項和為Sn=n2+n.
(1)求an;
(2)若bn=3n,數(shù)列cn=an•bn,求數(shù)列{cn}的前n項和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=sin($\frac{π}{4}$-2x),要使不等式|f(x)-m|<1對任意x∈R都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.化簡:$\frac{{x}^{2}+3x+9}{{x}^{3}-27}$+$\frac{6x}{9x-{x}^{2}}$-$\frac{x-1}{6+2x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,斜率為1的直線過F且交橢圓于A、B兩點,若$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{a}$=(3,-1)共線,則此橢圓的離心率為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案