如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面BB1C1C;
(Ⅱ)求證:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
【答案】分析:(I)由已知中側(cè)面ABB1A1,ACC1A1均為正方形,由正方形的幾何特征結(jié)合線面垂直的判定,易得AA1⊥平面ABC,即三棱柱ABC-A1B1C1是直三棱柱,再由點(diǎn)D是棱B1C1的中點(diǎn),結(jié)合等腰三角形“三線合一”,及直三棱柱的幾何特征,結(jié)合線面垂直的判定定理,即可得到A1D⊥平面BB1C1C;
(Ⅱ)連接AC1,交A1C于點(diǎn)O,連接OD,由正方形的幾何特征及三角形中位線的性質(zhì),可得OD∥AB1,進(jìn)而結(jié)合線面平行的判定定理,我們易得,AB1∥平面A1DC;
(Ⅲ)因?yàn)锳B,AC,AA1兩兩互相垂直,故可以以A坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出幾何體中各頂點(diǎn)的坐標(biāo),進(jìn)而求出平面DA1C與平面A1CA的法向量,代入向量夾角公式,即可得到答案.
解答:(Ⅰ)證明:因?yàn)閭?cè)面ABB1A1,ACC1A1均為正方形,
所以AA1⊥AC,AA1⊥AB,
所以AA1⊥平面ABC,三棱柱ABC-A1B1C1是直三棱柱.(1分)
因?yàn)锳1D?平面A1B1C1,所以CC1⊥A1D,(2分)
又因?yàn)锳1B1=A1C1,D為B1C1中點(diǎn),
所以A1D⊥B1C1.(3分)
因?yàn)镃C1∩B1C1=C1,
所以A1D⊥平面BB1C1C.(4分)
(Ⅱ)證明:連接AC1,交A1C于點(diǎn)O,連接OD,
因?yàn)锳CC1A1為正方形,所以O(shè)為AC1中點(diǎn),又D為B1C1中點(diǎn),
所以O(shè)D為△AB1C1中位線,所以AB1∥OD,(6分)
因?yàn)镺D?平面A1DC,AB1?平面A1DC,
所以AB1∥平面A1DC.(8分)
(Ⅲ)解:因?yàn)閭?cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,
所以AB,AC,AA1兩兩互相垂直,如圖所示建立直角坐標(biāo)系A(chǔ)-xyz.
設(shè)AB=1,則.,(9分)
設(shè)平面A1DC的法向量為n=(x,y,z),則有,,x=-y=-z,
取x=1,得n=(1,-1,-1).(10分)
又因?yàn)锳B⊥平面ACC1A1,所以平面ACC1A1的法向量為,(11分),(12分)
因?yàn)槎娼荄-A1C-A是鈍角,
所以,二面角D-A1C-A的余弦值為.(13分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角的求法,直線與平面平行的判定,直線與平面垂直的判定,其中熟練掌握線面關(guān)系的判定、性質(zhì)、定義及幾何特征是解答線面關(guān)系判定的關(guān)鍵,而利用向量法求二面角的關(guān)鍵是建立適當(dāng)?shù)淖鴺?biāo)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點(diǎn),平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點(diǎn),且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1;
(2)試探究:在AC上是否存在點(diǎn)F,滿足EF∥平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案