【題目】已知函數(shù).
(1)討論函數(shù) 的單調(diào)性;
(2)若曲線上存在唯一的點,使得曲線在該點處的切線與曲線只有一個公共點,求實數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1) 求出,分四種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)的增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2) 曲線在點處的切線方程和聯(lián)立可得:,設(shè),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,判斷函數(shù)的零點個數(shù),確定的范圍即可.
(1),設(shè)
①當(dāng)時,在上大于零,在上小于零,所以在上單調(diào)遞增,在單調(diào)遞減;
② 當(dāng)時,(當(dāng)且僅當(dāng)時),所以在上單調(diào)遞增;
③ 當(dāng)時,在上大于零,在上小于零,所以在上單調(diào)遞增,在單調(diào)遞減;
④當(dāng)時,在上大于零,在上小于零,所以在上單調(diào)遞增,在上單調(diào)遞減.
(2)曲線在點處的切線方程為,切線方程和聯(lián)立可得:,現(xiàn)討論該方程根的個數(shù):
設(shè), 所以.
,設(shè),則.
①當(dāng)時,,所以在上單調(diào)遞減,
又,所以在上大于零,在上小于零,所以在上單調(diào)遞增,在上單調(diào)遞減,
又,所以只有唯一的零點,由的任意性,所以不符合題意;
② 當(dāng)時,在上小于零,在上大于零,所以在上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時,在上大于零,在上小于零,所以在上單調(diào)遞增,在上單調(diào)遞減,所以在上小于或等于零,且有唯一的零點.
函數(shù)開口向上,若其判別式不大于零,
則對任意,有;若其判別式大于零,設(shè)其右側(cè)的零點為,則對任意的,有,所以在區(qū)間上,存在零點,綜上的零點不唯一;
當(dāng)時,可得,所以在上單調(diào)遞增,所以其只有唯一的零點;
當(dāng)時,在上大于零,在上小于零,所以在上單調(diào)遞增,在上單調(diào)遞減,所以在上大于或等于零,且有唯一的零點.
函數(shù)在區(qū)間上一定存在最大值,設(shè)為,若,則在上小于零.若,當(dāng)時,,所以在區(qū)間上,存在零點,綜上的零點不唯一.
綜上,當(dāng) 時,曲線上存在唯一的點,使得曲線在該點處的切線與曲線只有一個公共點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著計算機(jī)的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計算機(jī)應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計算機(jī)圖形.如圖所示的圖標(biāo)是一種被稱之為“黑白太陽”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個全等的矩形,每一個矩形的長為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個“黑白太陽”圖標(biāo)中隨機(jī)取一點,則此點取自圖標(biāo)第三部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右頂點分別為A,B,離心率為,點P(1,)為橢圓上一點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過點C(0,1)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k1=2k2,求直線l斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a2=a,且an+1=k(an+an+2)對任意正整數(shù)n都成立,數(shù)列{an}的前n項和為Sn.
(1)若,且S2019=2019,求a;
(2)是否存在實數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且任意相鄰三項am,am+1,am+2按某順序排列后成等差數(shù)列,若存在,求出所有k的值;若不存在,請說明理由;
(3)若,求Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程是:
(1)求曲線的普通方程和直線的直角坐標(biāo)方程.
(2)點是曲線上的動點,求點到直線距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時,在定義域內(nèi)恒成立,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com