11.平面直角坐標系xoy中,單位圓與x軸交于A,B兩點,P為圓上任意一點,則PA+PB的最大值為2$\sqrt{2}$.

分析 由題意,PA2+PB2=4,利用(PA+PB)2≤2(PA2+PB2),即可求出PA+PB的最大值.

解答 解:由題意,PA2+PB2=4,
∴(PA+PB)2≤2(PA2+PB2)=8,
∴PA+PB≤2$\sqrt{2}$,
∴PA+PB的最大值為2$\sqrt{2}$,、
故答案為2$\sqrt{2}$.

點評 本題考查求PA+PB的最大值,考查基本不等式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合M={(x,y)|y=f(x)},若對任意p1(x1,y1)∈M,均存在p2(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M為“優(yōu)越集”,給出下列集合:
①M=$\left\{{(x,y)\left|{y=\frac{1}{x}}\right.}\right\}$
②M={(x,y)|y=lnx}
③M={(x,y)|y=-x2+1}
④M={(x,y)|(x-2)2+y2=1}
⑤M={(x,y)|x2-2y2=1}
其中所有“優(yōu)越集”的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.定義在R上的函數(shù)f(x)=|2x+5|+|2x-1|≥a恒成立,
(1)求a的最大值;
(2)若m,n,p是正實數(shù),且滿足m+n+p=1,求證:mn+np+mp≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在數(shù)列{an}中,an+1=an+a (n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$滿足2$\overrightarrow{OC}$=a2$\overrightarrow{OA}$+a2015$\overrightarrow{OB}$,三點A、B、C共線且該直線不過O點,則S2016等于( 。
A.2016B.2017C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=6,求
(1)($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若α,β∈($\frac{π}{4}$,$\frac{π}{2}$),則下列不等式中不成立的序號有①②④.
①sin2α<cos2β;②sinα+cosα<1;③tanα>sinα;④sin(α+β)>cos(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|log2(x2-3x)<2},B={x|$\frac{x+3}{2-x}$≥0},則A∩B=( 。
A.(-1,0)B.(-1,2)C.(-1,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)函數(shù)y=f(x)是一次函數(shù),且f[f(x)]=9x+8,求f(x);
(2)已知3f(x)+2f(-x)=x+3,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≥0\\ 1,{\;}^{\;}{\;}^{\;}x<0\end{array}\right.$的值域為[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案