分析 (1)利用絕對值的幾何意義,求出表達式的最小值,即可得到a的最大值.
(2)通過平方,利用基本不等式證明即可.
解答 解:(1)函數(shù)f(x)=|2x+5|+|2x-1|≥|2x+5-2x+1|=6,
定義在R上的函數(shù)f(x)=|2x+5|+|2x-1|≥a恒成立,
可得a≤6,a的最大值為:6.
(2)證明:∵(m+n+p)2=m2+n2+p2+2mp+2np+2nm=1.
∵m,n,p是正實數(shù),m2+n2≥2mn,n2+p2≥2np,m2+p2≥2mp,
∴m2+n2+p2≥mp+np+nm,
∴m2+n2+p2+2mp+2np+2nm≥3mp+3np+3nm..
∴(m+n+p)2≥3mp+3np+3nm,
∴mn+np+mp≤$\frac{1}{3}$.
點評 本題考查絕對值的幾何意義,不等式的證明,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{32}$,0) | B. | (-2,0) | C. | ($\frac{1}{32}$,0) | D. | (0,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com