在如圖所示的多面體中,
,
.
(Ⅰ)求證:
;
(Ⅱ)求證:
.
試題分析:(Ⅰ)由線線垂直得到線面垂直,再根據(jù)直線所在的平面得到線線垂直;(Ⅱ)根據(jù)性質定理:“一條直線與一個平面平行,那么過這條直線作一個平面與此平面相交,那么該直線與交線平行.”來證明.
試題解析:(Ⅰ)證明:因為
,
, 又
,
平面
,所以
平面
.由于
平面
, 所以
.
(Ⅱ)證明:因為
,又
平面
,
平面
,所以
平面
, 而
平面
,平面
平面
,所以
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
平面
,
是矩形,
,點
是
的中點,點
是邊
上的動點.
(Ⅰ)求三棱錐
的體積;
(Ⅱ)當點
為
的中點時,試判斷
與平面
的位置關系,并說明理由;
(Ⅲ)證明:無論點
在邊
的何處,都有
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
.
(Ⅰ)若M為PA中點,求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在正三棱柱
中,
,
分別為
,
的中點.
(1)求證:
平面
;
(2)求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,平面
平面
,
,
.設
,
分別為
,
中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)試問在線段
上是否存在點
,使得過三點
,
,
的平面內的任一條直線都與平面
平行?若存在,指出點
的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知平面
α,
β,直線
m,
n,下列命題中不正確的是( ).
A.若m⊥α,m⊥β,則α∥β |
B.若m∥n,m⊥α,,則n⊥α |
C.若m∥α,α∩β=n,則m∥n |
D.若m⊥α,m?β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
表示一條直線,
,
表示兩個不重合的平面,有以下三個語句:①
;②
;③
.以其中任意兩個作為條件,另外一個作為結論,可以得到三個命題,其中正確命題的個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
、
是兩個不重合的平面,m、m是兩條不重合的直線,則以下結論錯誤的是
查看答案和解析>>