【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N* .
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.
【答案】
(1)
解:∵S2=4,an+1=2Sn+1,n∈N*.
∴a1+a2=4,a2=2S1+1=2a1+1,
解得a1=1,a2=3,
當(dāng)n≥2時(shí),an+1=2Sn+1,an=2Sn﹣1+1,
兩式相減得an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即an+1=3an,當(dāng)n=1時(shí),a1=1,a2=3,
滿足an+1=3an,
∴ =3,則數(shù)列{an}是公比q=3的等比數(shù)列,
則通項(xiàng)公式an=3n﹣1
(2)
解:an﹣n﹣2=3n﹣1﹣n﹣2,
設(shè)bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,
則b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,
當(dāng)n≥3時(shí),3n﹣1﹣n﹣2>0,
則bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,
此時(shí)數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和Tn=3+ ﹣ = ,
則Tn= .
【解析】(1)根據(jù)條件建立方程組關(guān)系,求出首項(xiàng),利用數(shù)列的遞推關(guān)系證明數(shù)列{an}是公比q=3的等比數(shù)列,即可求通項(xiàng)公式an;(2)討論n的取值,利用分組法將數(shù)列轉(zhuǎn)化為等比數(shù)列和等差數(shù)列即可求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.本題主要考查遞推數(shù)列的應(yīng)用以及數(shù)列求和的計(jì)算,根據(jù)條件建立方程組以及利用方程組法證明列{an}是等比數(shù)列是解決本題的關(guān)鍵.求出過程中使用了轉(zhuǎn)化法和分組法進(jìn)行數(shù)列求和.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設(shè)a=2,b= .
①求方程f(x)=2的根;
②若對于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實(shí)數(shù)m的最大值;
(2)若0<a<1,b>1,函數(shù)g(x)=f(x)﹣2有且只有1個(gè)零點(diǎn),求ab的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P-ABC中,底面ABCD為平行四邊形,,O為AC的中點(diǎn),平面M為PD的中點(diǎn)。
(1)證明平面.
(2)證明平面 .
(3)求三棱錐P-MAC體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上且|AnAn+1|=|An+1An+2|,An≠An+1 , n∈N* , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N* , (P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列
B.{Sn2}是等差數(shù)列
C.{dn}是等差數(shù)列
D.{dn2}是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中,,,,);
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,一動(dòng)直線l過與圓相交于.兩點(diǎn),是中點(diǎn),l與直線m:相交于.
(1)求證:當(dāng)l與m垂直時(shí),l必過圓心;
(2)當(dāng)時(shí),求直線l的方程;
(3)探索是否與直線l的傾斜角有關(guān),若無關(guān),請求出其值;若有關(guān),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在高為2的梯形中, , , ,過、分別作, ,垂足分別為、。已知,將梯形沿、同側(cè)折起,得空間幾何體,如圖2。
(1)若,證明: ;
(2)若,證明: ;
(3)在(1),(2)的條件下,求三棱錐的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com