A. | -3 | B. | 3 | C. | 1 | D. | -1 |
分析 設(shè)向量$\overrightarrow{O{P}_{3}}$=(x,y),由于向量$\overrightarrow{O{P}_{3}}$與向量$\overrightarrow{a}$=(1,-1)共線,可得y+x=0.由于P1,P2,P3三點共線,可得$\overrightarrow{O{P}_{3}}$=λ•$\overrightarrow{O{P}_{1}}$+(1-λ)•$\overrightarrow{O{P}_{2}}$,即(x,y)=λ(3,1)+(1-λ)(-1,3),解出x,y代入即可得出.
解答 解:設(shè)向量$\overrightarrow{O{P}_{3}}$=(x,y),∵向量$\overrightarrow{O{P}_{3}}$與向量$\overrightarrow{a}$=(1,-1)共線,∴y+x=0.
∵P1,P2,P3三點共線,
∴$\overrightarrow{O{P}_{3}}$=λ•$\overrightarrow{O{P}_{1}}$+(1-λ)•$\overrightarrow{O{P}_{2}}$,
∴(x,y)=λ(3,1)+(1-λ)(-1,3),
∴x=3λ+λ-1=4λ-1,y=λ+3(1-λ)=3-2λ,
代入y+x=0,可得2λ+2=0,
解得λ=-1.
故選:D.
點評 本題考查了向量共線定理的坐標運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 168 | B. | 45 | C. | 60 | D. | 111 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2π}{3}$ | B. | -$\frac{π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com