【題目】已知函數(shù)

1)當(dāng)時,求曲線y=fx)在點(1,f1))處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若fx≥1,求a的取值范圍.

【答案】12

【解析】

1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,求出與坐標(biāo)軸交點坐標(biāo),最后根據(jù)三角形面積公式得結(jié)果;

2)解法一:利用導(dǎo)數(shù)研究,得到函數(shù)得導(dǎo)函數(shù)的單調(diào)遞增,當(dāng)a=1時由,符合題意;當(dāng)a>1時,可證,從而存在零點,使得,得到,利用零點的條件,結(jié)合指數(shù)對數(shù)的運算化簡后,利用基本不等式可以證得恒成立;當(dāng)時,研究.即可得到不符合題意.綜合可得a的取值范圍.

解法二:利用指數(shù)對數(shù)的運算可將,

,上述不等式等價于,注意到的單調(diào)性,進一步等價轉(zhuǎn)化為,令,利用導(dǎo)數(shù)求得,進而根據(jù)不等式恒成立的意義得到關(guān)于a的對數(shù)不等式,解得a的取值范圍.

1,.

,∴切點坐標(biāo)為(1,1+e),

∴函數(shù)f(x)在點(1,f(1)處的切線方程為,,

切線與坐標(biāo)軸交點坐標(biāo)分別為,

∴所求三角形面積為;

2)解法一:,

,且.

設(shè),

∴g(x)在上單調(diào)遞增,即上單調(diào)遞增,

當(dāng)時,,,成立.

當(dāng)時, ,,,

∴存在唯一,使得,且當(dāng),當(dāng),,,

因此

>1,

恒成立;

當(dāng)時, 不是恒成立.

綜上所述,實數(shù)a的取值范圍是[1,+).

解法二:等價于

,

,上述不等式等價于,

顯然為單調(diào)增函數(shù),∴又等價于,即,

,

h’(x)>0,h(x)單調(diào)遞增;在(1,+)h’(x)<0,h(x)單調(diào)遞減,

,

,a的取值范圍是[1,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.

1)根據(jù)題目條件完成下邊列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為學(xué)生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

乙班

20

總計

60

2)現(xiàn)已知,,三人獲得優(yōu)秀的概率分別為,,設(shè)隨機變量表示,三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附:

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關(guān)于直線對稱,它的最小正周期為π,則(   )

A. f(x)的圖象過點(0,) B. f(x)上是減函數(shù)

C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展勞動實習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BCDG,垂足為CtanODC=,,EF=12 cm,DE=2 cm,A到直線DEEF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點或點為圓心,以這個正方形的對角線為半徑作圓,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以該木塔底層的邊作正方形,會發(fā)現(xiàn)該正方形與其內(nèi)切圓的一個切點正好位于塔身和塔頂?shù)姆纸缇上.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于47.5米,塔頂到點的距離不超過19.9米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.66.1B.67.3C.68.5D.69.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,過曲線外的一點(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫出曲線和直線的普通方程(以極點為原點,極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左右焦點分別為,左右項點分別為,上的動點.

(1)若點在第一象限, ,求點的坐標(biāo);

(2)不重合,直線分別交軸于兩點,求證: ;

(3)若點在左支上,是否存在實數(shù),使得到直線的距離與之比為定值?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知),,且函數(shù)圖像上的任意兩條對稱軸之間距離的最小值是.

1)求的值和的單調(diào)增區(qū)間;

2)將函數(shù)的圖像向右平移個單位后,得到函數(shù)的圖像,求函數(shù)上的最值,并求取得最值時的的值.

查看答案和解析>>

同步練習(xí)冊答案