已知向量
a
=(2,sinθ)與
b
=(1,cosθ)互相平行,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)若sin(θ-φ)=
10
10
,0<φ<
π
2
,求cosφ的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,平面向量共線(平行)的坐標(biāo)表示
專題:計算題,三角函數(shù)的求值,平面向量及應(yīng)用
分析:(1)運(yùn)用向量共線的坐標(biāo)表示和同角的平方關(guān)系,解方程即可得到;
(2)運(yùn)用角的變換φ=θ-(θ-φ)和兩角差的余弦公式,計算即可得到.
解答: 解:(1)∵向量
a
=(2,sinθ)與
b
=(1,cosθ)互相平行,
∴sinθ=2cosθ,由sin2θ+cos2θ=1,
由θ∈(0,
π
2
),則sinθ=
2
5
5
,cosθ=
5
5
;
(2)∵sin(θ-φ)=
10
10
,0<φ<
π
2
,
又θ∈(0,
π
2
),則-
π
2
<θ-φ<
π
2
,
則cos(θ-φ)=
1-sin2(θ-φ)
=
1-
1
10
=
3
10
10
,
則有cosφ=cos[θ-(θ-φ)]=cosθcos(θ-φ)+sinθsin(θ-φ)
=
5
5
×
3
10
10
+
2
5
5
×
10
10
=
2
2
點(diǎn)評:本題考查平面向量的共線的坐標(biāo)表示,考查同角的平方關(guān)系和兩角差的余弦公式,考查角的變換的方法,考查運(yùn)算能力,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的軸截面是邊長為2的正三角形,則該圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:△ABC中,∠A=30°,D為邊BC上一點(diǎn),
AB
2=
AD
2+
BD
DC
,求∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非空數(shù)集A、B、C,若A={y|y=x2,x∈B},B={y|y=
x
,x∈C},C={y|y=x3,x∈A},則(  )
A、A=B=C
B、A=B≠C
C、A=C≠B
D、B=C≠A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
AB
|=4,|
CA
|=3,且
AB
CA
夾角為
3
,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)設(shè)計如圖所示的程序框圖用以計算和式12+22+32+…+202的值,則在判斷框中應(yīng)填寫(  )
A、i≤9B、i≥9
C、i≤20D、i≥11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且F2到直線PF1的距離等于雙曲線的實(shí)軸長,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+
π
3
)(ω>0)的最小正周期是π.
(1)求f(
12
)的值;
(2)若f(x0)=
3
,且x0∈(
π
12
,
π
3
),求sin2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線a∥平面α,直線b⊥直線a,則直線b與平面α的位置關(guān)系是(  )
A、b∥αB、b?α
C、b與α相交D、以上均有可能

查看答案和解析>>

同步練習(xí)冊答案