【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.
(1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
(2)若E是PC的中點(diǎn),F(xiàn)是AD上的動(dòng)點(diǎn),問AF為何值時(shí),EF⊥平面PBC.
【答案】
(1)解:如圖示:
底面ABCD是正方形對角線相交于O,
則O是AC、BD的中點(diǎn),OE∥PA,OF∥AB,
∴平面OEF∥平面PAB,
EF平面OEF,
∴EF∥平面PAB
(2)解:當(dāng)AF=1時(shí),OF⊥AD,即BC⊥OF,
此時(shí),∵PA⊥平面ABCD,∴PA⊥BC,
∴EO⊥BC,∴BC⊥平面EOF,
BC平面PBC,
∴平面EOF⊥平面PBC
【解析】(1)由線線平行得到線面平行,從而證明出線面平行;(2)根據(jù)線面垂直證出面面垂直即可.
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為(1,0),A,B是拋物線上位于x軸兩側(cè)的兩動(dòng)點(diǎn),且 =﹣4(O為坐標(biāo)原點(diǎn)).
(1)求拋物線方程;
(2)證明:直線AB過定點(diǎn)T;
(3)過點(diǎn)T作AB的垂線交拋物線于M,N兩點(diǎn),求四邊形AMBN的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD, , .
(1)當(dāng) 時(shí),求證:BM∥平面ADEF;
(2)若平面BDM與平面ABF所成銳角二面角的余弦值為 時(shí),求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A、B、C的對邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人要利用無人機(jī)測量河流的寬度,如圖,從無人機(jī)A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時(shí)無人機(jī)的高是60米,則河流的寬度BC等于( )
A. 米
B. 米
C. 米
D. 米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com