如圖,已知橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
及兩條直線l1:x=-
a
2
 
c
,l2:x=
a
2
 
c
,其中c=
a
2
 
-
b
2
 
,且l1,l2分別交x軸于C、D兩點.從l1上一點A發(fā)出一條光線經(jīng)過橢圓的左焦點F被石軸反射后與l2交于點B.若AF⊥BF,且∠ABD=75°,則橢圓的離心率等于(  )
分析:根據(jù)光線反射的幾何性質,得∠AFC=∠AFC=45°,從而得到Rt△ACF與Rt△BDF都是等腰直角三角形.Rt△ABF中算出∠ABF=30°,得到|BF|=
3
|AF|,從而有|DF|=
3
|CF|,結合橢圓的幾何性質將其轉化為關于a、c的等式,化簡整理即可得到該橢圓的離心率.
解答:解:根據(jù)題意,得∠AFC=∠AFC=
1
2
(180°-90°)=45°
∴Rt△ACF與Rt△BDF都是等腰直角三角形.
∵∠ABD=75°,∴∠ABF=75°-45°=30°
Rt△ABF中,tan30°=
|AF|
|BF|
=
3
3
,得|BF|=
3
|AF|
∵|CF|=
2
2
|AF|,|DF|=
2
2
|BF|,∴|DF|=
3
|CF|…(*)
∵橢圓方程是
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,
∴左焦點F(-c,0)
因此,|DF|=
a2
c
+c,|CF|=
a2
c
-c,代入(*)得
a2
c
+c=
3
a2
c
-c),即(
3
+1)c=(
3
-1)
a2
c

∴兩邊都除以a,得(
3
+1)e=(
3
-1)
1
e
,得e2=
(
3
-1)2
2

∴離心率e=
3
-1
2
=
6
-
2
2
(舍負)
故選:A
點評:本題給出光的反射問題,求橢圓的離心率,著重考查了橢圓的標準方程與簡單幾何性質和直角三角形的有關性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且
F2B
=λ
AF2

(1)求證:切線l的斜率為定值;
(2)若動點T滿足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值為-
5
4
,求拋物線P的方程;
(3)當λ∈[2,4]時,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•崇明縣一模)如圖,已知橢圓C:
x2
a2
-
y2
b2
=1
(a>0,b>0)過點P(
2
,
6
),上、下焦點分別為F1、F2,向量
PF1
PF2
.直線l與橢圓交于A,B兩點,線段AB中點為m(
1
2
,-
3
2
).
(1)求橢圓C的方程;
(2)求直線l的方程;
(3)記橢圓在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D,若曲線x2-2mx+y2+4y+m2-4=0與區(qū)域D有公共點,試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•梅州一模)如圖,已知橢圓C:
x2
a2
+y2=1(a>1)的上頂點為A,右焦點為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)不過點A的動直線l與橢圓C相交于PQ兩點,且
AP
AQ
=0.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關系式;
(2)當點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2
;
(3)設圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

同步練習冊答案