A. | 2 | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 連接PF1,設(shè)PF2的中點(diǎn)為M,由相切可得PF1⊥PF2,運(yùn)用勾股定理可得|PF1|=$\sqrt{3}$c,運(yùn)用中位線定理可得P到漸近線的距離為$\frac{\sqrt{3}}{2}$c,由點(diǎn)到直線的距離公式和雙曲線的離心率公式,計(jì)算即可得到所求值.
解答 解:設(shè)PF1的中點(diǎn)為M,
由題意可得PF1⊥PF2,|PF2|=c,|F1F2|=2c,
可得|PF1|=$\sqrt{3}$c,
即有P到漸近線的距離為$\frac{\sqrt{3}}{2}$c,
由OM為中位線可得F2(c,0)到漸近線的距離為$\frac{\sqrt{3}}{2}$c,
由雙曲線的漸近線方程y=$\frac{a}$x,
可得d=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$c,
化為3c2=4b2,
又b2=c2-a2,
可得c=2a,即e=$\frac{c}{a}$=2.
故選A.
點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用直線和圓相切的條件和中位線定理、勾股定理,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p、q中至少一個有一個為真命題 | B. | p、q均為假命題 | ||
C. | p、q均為真命題 | D. | p、q中至多一個有一個為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,\frac{1}{2}})$ | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})$ | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-$\frac{1}{x+1}$ | B. | f(x)=x2-3x | C. | f(x)=3-x | D. | f (x)=-|x| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com