2.sin17°•cos43°+sin73°•sin43°等于$\frac{\sqrt{3}}{2}$.

分析 由誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計(jì)算得解.

解答 解:sin17°•cos43°+sin73°•sin43°
=sin17°•cos43°+cos17°•sin43°
=sin(17°+43°)
=sin60°
=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)y=xlnx的最小值為(  )
A.-e-1B.-eC.e2D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知2弧度的圓心角所對(duì)的半徑長(zhǎng)為2,那么這個(gè)圓心角所對(duì)的弧長(zhǎng)是(  )
A.2B.sin2C.$\frac{2}{sin1}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.執(zhí)行如下圖所示的程序框圖,則輸出的結(jié)果是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若F1,F(xiàn)2分別是雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn),過(guò)點(diǎn)F1作以F2為圓心|OF2|為半徑的圓的切線(xiàn),Q為切點(diǎn),若切線(xiàn)段F1Q被雙曲線(xiàn)的一條漸近線(xiàn)平分,則雙曲線(xiàn)的離心率為( 。
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植果樹(shù),但需要有輔助光照.半圓周上的C處恰有一可旋轉(zhuǎn)光源滿(mǎn)足果樹(shù)生長(zhǎng)的需要,該光源照射范圍是$∠ECF=\frac{π}{6}$,點(diǎn)E,F(xiàn)在直徑AB上,且$∠ABC=\frac{π}{6}$.
(1)若$CE=\sqrt{13}$,求AE的長(zhǎng);
(2)設(shè)∠ACE=α,求該空地種植果樹(shù)的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,$\frac{sinA}{sinB}=2,BCcosB+ACcosA=1$,則有如下說(shuō)法:①AB=1;②△ABC面積的最大值為$\frac{1}{3}$;③當(dāng)△ABC面積取到的最大值時(shí),$AC=\frac{2}{3}$;則上述說(shuō)法正確的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.一個(gè)屋頂?shù)哪骋粋(gè)斜面成等腰梯形,最上面一層鋪了21塊瓦片,往下每一層多鋪一塊瓦片,斜面上鋪了20層瓦片,問(wèn)共鋪了多少塊瓦片.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)$f(x)={log_2}({x^2}-2ax+3)$在區(qū)間$(\frac{1}{2},1)$上為減函數(shù),則a的取值范圍為[1,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案