現(xiàn)有8名青年,其中有5名能勝任英語翻譯工作;有4名青年能勝任德語翻譯工作(其中有1名青年兩項工作都能勝任),現(xiàn)在要從中挑選5名青年承擔(dān)一項任務(wù),其中3名從事英語翻譯工作,2名從事德語翻譯工作,則有多少種不同的選法?
考點:排列、組合及簡單計數(shù)問題
專題:排列組合
分析:根據(jù)題意,設(shè)能勝任兩種工作的那個人為A,進(jìn)而分3類討論:不選派A;A被選為英語翻譯工作;A被選為德語翻譯工作;分別求出其情況數(shù)目,由分類計數(shù)原理,計算可得答案.
解答: 解:設(shè)能勝任兩種工作的那個人為A,
記為A不選派A的方法數(shù)C43C32=12;
A被選為英語翻譯工作的方法數(shù)C42C32=18;
A被選為德語翻譯工作的方法數(shù) C43C31=12,
故不同的選法種數(shù)為42,
點評:本題考查排列、組合的運用,關(guān)鍵在于分析兩種工作都能勝任的參加者,對其參與的情況分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
x
2
+
π
4
)cos(
x
2
-
π
4
)-sin2
x
2
,先將f(x)的圖象向右平移
π
4
個單位,再將所得圖象上的所有點的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)伸長到原來的
2
倍,得到g(x)的圖象.
(1)求f(x)的最小正周期;
(2)若x∈[0,
π
4
],求f(x)的值域;
(3)若F(x)=2af(x)+
a
2
g(x)+1,x∈[0,
π
4
],a≠0,試求F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求四棱錐P-ABCD的體積VP-ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+x2-3x+1
(Ⅰ)求曲線y=f(x)在(2,f(2))處的切線方程.
(Ⅱ)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z-3i,
1+z
2i
均為實數(shù),(i為虛單位),求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}是公比不相等的兩個等比數(shù)列,cn=an+bn.求證:數(shù)列{cn}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=x-1和圓C:x2+y2-6x+4y+4=0交于M,N兩點.
(Ⅰ)求|MN|;
(Ⅱ)求以線段MN為直徑的圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若離散型隨機變量X~B(6,p),且E(X)=2,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α+
π
4
)=
3
5
π
2
≤α<
3
2
π,則cos2α的值是
 

查看答案和解析>>

同步練習(xí)冊答案