f(x)是偶函數(shù),在[0,+∞)遞增,f(x+1)=f(
x+1
x
)的所有實(shí)根之和.
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:因?yàn)閒(x)是偶函數(shù),在[0,+∞)遞增,故f(x+1)=f(
x+1
x
)可化為x+1=
x+1
x
或x+1=-
x+1
x
;從而解得.
解答: 解:∵f(x)是偶函數(shù),在[0,+∞)遞增,
∴f(x+1)=f(
x+1
x
)可化為
x+1=
x+1
x
或x+1=-
x+1
x
;
故x+1=0或x=1;
故x=-1或x=1;
故f(x+1)=f(
x+1
x
)的所有實(shí)根之和為-1+1=0.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a,b,c滿足a2+b2+c2=1,則3ab-3bc+2c2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0且a≠1,則“函數(shù)f(x)=ax在R上是減函數(shù)”,是“函數(shù)g(x)=(2-a)x3在R上是增函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
e1
、
e2
不共線,如果
AB
=
e1
+
e2
,
AC
=2
e1
+8
e2
,
AD
=3
e1
-3
e2
,求證:A、B、C、D共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用誘導(dǎo)公式化簡:cot(-370°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
a
b
-1,其中向量
a
=(
3
sin2x,cosx),
b
=(1,2cosx),x∈[0,
π
2
],則f(x)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個(gè)命題:
①5≥2且7≥3;
②平行四邊形的對(duì)角線互相垂直或平分;
③若x+y≠3,則x≠1或y≠2;
④若(x-1)(x-2)=0,則x=1.
其中真命題為
 
.(填上你認(rèn)為正確的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷中正確的是(  )
A、?m∈R使f(x)=(m-1)x m2-4m+3是冪函數(shù),且在(0,+∞)上遞減
B、“
1
a
+
1
b
=4”的必要不充分條件是“a=b=
1
2
C、命題“若a+
1
a
=2,則a=1”的逆否命題是“若a=1則a+
1
a
≠2”
D、命題“?a∈R,a2+1≥2a”的否定是:“?a∈R,a2+1≤2a”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2x3+ax,若對(duì)于區(qū)間(1,2)內(nèi)任意兩個(gè)不等的實(shí)數(shù)p,q,不等式
f(p)-f(q)
p-q
>0恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案