將編號為1,2,3的三個小球隨意放入編號為1,2,3的三個紙箱中,每個紙箱內有且只有一個小球,稱此為一輪“放球”,設一輪“放球”后編號為i(i=1,2,3)的紙箱放入的小球編號為ai,定義吻合度誤差為ξ=|1-a1|+|2-a2|+|3-a3|.假設a1,a2,a3等可能地為1、2、3的各種排列,求
(1)某人一輪“放球”滿足ξ=2時的概率.
(2)ξ的數學期望.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
3 |
5 |
1 |
2 |
1 |
2 |
2 |
5 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2011-2012學年江西省高三第一次統(tǒng)考理科數學 題型:解答題
.將編號為1,2,3的三個小球隨意放入編號為1,2,3的三個紙箱中,每個紙箱內有且只有一
個小球,稱此為一輪“放球”,設一輪“放球”后編號為i(i=1,2,3)的紙箱放入的小球編號為ai,定義
吻合度誤差為=|1-a1|+|2-a2|+|3-a3|。假設a1,a2,a3等可能地為1、2、3的各種排列,求⑴某人一
輪“放球”滿足=2時的概率。⑵的數學期望。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com