【題目】設函數(shù)f(x)=x3﹣3x+1,x∈[﹣2,2]的最大值為M,最小值為m,則M+m= .
【答案】2
【解析】解:由f(x)=x3﹣3x+1,得f′(x)=3x2﹣3=3(x+1)(x﹣1), 當x∈(﹣2,﹣1)∪(1,2)時,f′(x)>0,當x∈(﹣1,1)時,f′(x)<0.
∴函數(shù)f(x)的增區(qū)間為(﹣2,﹣1),(1,2);減區(qū)間為(﹣1,1).
∴當x=﹣1時,f(x)有極大值3,當x=1時,f(x)有極小值﹣1.
又f(﹣2)=﹣1,f(2)=3.
∴最大值為M=3,最小值為m=﹣1,
則M+m=3﹣1=2.
所以答案是:2.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導數(shù)的相關(guān)知識點,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實數(shù)m的取值集合B;
(2)設不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】銳角△ABC中,其內(nèi)角A、B滿足:2cosA=sinB﹣ cosB.
(1)求角C的大。
(2)D為AB的中點,CD=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為( )
A. 尺
B. 尺
C. 尺
D. 尺
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐標系下的普通方程;
(Ⅱ)已知直線l:y=x和曲線C1交于M,N兩點,求弦MN中點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l: (t為參數(shù)),曲線C1: (θ為參數(shù)).
(Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的 倍,縱坐標壓縮為原來的 倍,得到曲線C2 , 設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】艾薩克牛頓(1643年1月4日﹣1727年3月31日)英國皇家學會會長,英國著名物理學家,同時在數(shù)學上也有許多杰出貢獻,牛頓用“作切線”的方法求函數(shù)f(x)零點時給出一個數(shù)列{xn}:滿足 ,我們把該數(shù)列稱為牛頓數(shù)列.如果函數(shù)f(x)=ax2+bx+c(a>0)有兩個零點1,2,數(shù)列{xn}為牛頓數(shù)列,設 ,已知a1=2,xn>2,則{an}的通項公式an= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)= +g(x).
(1)試判斷g(x)的單調(diào)性;
(2)若f(x)在區(qū)間(0,1)上有極值,求實數(shù)a的取值范圍;
(3)當a>0時,若f(x)有唯一的零點x0 , 試求[x0]的值.(注:[x]為取整函數(shù),表示不超過x的最大整數(shù),如[0.3]=0,[2.6]=2,[﹣1.4]=﹣2;以下數(shù)據(jù)供參考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知D為圓O:x2+y2=8上的動點,過點D向x軸作垂線DN,垂足為N,T在線段DN上且滿足 .
(1)求動點T的軌跡方程;
(2)若M是直線l:x=﹣4上的任意一點,以OM為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標;
(3)若(2)中直線PQ與動點T的軌跡交于G,H兩點,且 ,求此時弦PQ的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com