等差數(shù)列{an}中,a4+a7+2a10+a13+a16=30,則其前19項和S19=
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)題意和等差數(shù)列的性質(zhì)求出a10=5,再由前n項和公式、性質(zhì)求出S19的值.
解答: 解:因為等差數(shù)列{an}中,a4+a7+2a10+a13+a16=30,
所以6a10=30,解得a10=5,
則S19=
19(a1+a19)
2
=19a10=95,
故答案為:95.
點評:本題考查了等差數(shù)列的性質(zhì)、前n項和公式的靈活應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:數(shù)列{an}的前n項和為Sn,且滿足Sn2-Sn-12=3n2an,a1=2,an≠0,n=2,3,4,….
(1)設(shè)cn=an+an+1,求c1、c2,并判斷數(shù)列{cn}是否為等差數(shù)列,說明理由;
(2)求數(shù)列{(-1)n+1anan+1}的前2k+1項的和T2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):
①f(x)=2-|x|;  
②f(x)=2sin2x-
3
sin2x-1;  
③f(x)=
x
x2-x+3

④f(x)是定義在實數(shù)集R上的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是“倍約束函數(shù)”的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4-|x|)的值域是[0,2],若關(guān)于t的方程(
1
2
|t|+m+1=0(t∈R)有實數(shù)解,則m+n的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(x)是一次函數(shù),且滿足:3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
(2)已知f(x0滿足:3f(x-1)+2f(1-x)=2x,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2lnx+x-6的零點一定位于下列哪個區(qū)間( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x-x2,問方程f(x)=0在區(qū)間[-1,0]內(nèi)有沒有實數(shù)解?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校1為老師和6名學(xué)生暑假到甲、乙、丙三個城市旅行學(xué)習(xí),每個城市隨機安排2名學(xué)生,教師可任意選擇一個城市.“學(xué)生a與老師去同一個城市”記為事件A,“學(xué)生a和b去同一城市”為事件B.
(1)求事件A、B的概率P(A)和P(B);
(2)記在一次安排中,事件A、B發(fā)生的總次數(shù)為ξ,求隨機變量ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案