【題目】已知函數(shù)

(1)討論f(x)的單調(diào)性;

(2)恰有兩個極值點,求實數(shù)m的取值范圍.

【答案】1)當時,為常數(shù)函數(shù),無單調(diào)性;當時,單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;當時,單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2.

【解析】

1)先求導(dǎo),對分類討論,即可求解;

2)函數(shù)有兩個極值點,轉(zhuǎn)化為導(dǎo)函數(shù)在定義域內(nèi)有兩個不同的零點,通過分離參數(shù),構(gòu)造新函數(shù),把兩個零點轉(zhuǎn)為新函數(shù)的圖像與直線有兩個交點,利用求導(dǎo)作出新函數(shù)的圖像,即可求解.

1的定義域為,

,

時,為常數(shù)函數(shù),無單調(diào)性;

時,令;

時,令

綜上所述,當時,為常數(shù)函數(shù),無單調(diào)性;

時,單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;

時,單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;

2)由題意,的定義域為,

,若上有兩個極值點,

上有兩個不相等的實數(shù)根,

①有兩個不相等的正的實數(shù)根,

時,不是的實數(shù)根,

時,由①式可得,

,

單調(diào)遞增,又;

單調(diào)遞增,且;

單調(diào)遞減,且;

因為;

所以左側(cè),

右側(cè),

,

所以函數(shù)的圖像如圖所示:

要使上有兩個不相等的實數(shù)根,

所以實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】石嘴山市第三中學高三年級統(tǒng)計學生的最近20次數(shù)學周測成績(滿分150分),現(xiàn)有甲乙兩位同學的20次成績?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學成績的中位數(shù),并將同學乙的成績的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學數(shù)學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);

(3)現(xiàn)從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標方程;

(Ⅱ)設(shè)點,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是等差數(shù)列,公差為,前項和為.

1)設(shè),,求的最大值.

2)設(shè),,數(shù)列的前項和為,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)當時,解不等式

2)已知是以2為周期的偶函數(shù),且當時,有.,且,求函數(shù)的反函數(shù);

3)若在上存在個不同的點,,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側(cè),其中.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,側(cè)棱、都和平面垂直,,,.

1)證明:平面平面;

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足任意都有,,,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的左焦點為離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點的直線交橢圓于兩點,過且與垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案