19.已知|$\overrightarrow{a}$|=2$\sqrt{3}$,|$\overrightarrow$|=6,$\overrightarrow{a}$•$\overrightarrow$=-18,則$\overrightarrow{a}$與$\overrightarrow$的夾角θ是150°.

分析 把已知數(shù)據(jù)代入向量的夾角公式可得夾角的余弦值,可得夾角.

解答 解:∵|$\overrightarrow{a}$|=2$\sqrt{3}$,|$\overrightarrow$|=6,$\overrightarrow{a}$•$\overrightarrow$=-18,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{-18}{2\sqrt{3}×6}$=-$\frac{\sqrt{3}}{2}$,
∴θ=150°
故答案為:150°

點評 本題考查向量的夾角公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項和為Sn,且滿足S13=104,公差d∈N*
(1)若a2,a5,a11成等比數(shù)列,求數(shù)列{an}的通項公式;
(2)是否存在數(shù)列{an},使得對任意的m∈N*,am+am+1仍然是數(shù)列{an}中的一項?若存在,求出所有滿足條件的公差d;若不存在,說明理由;
(3)設(shè)數(shù)列{bn}的每一列都是正整數(shù),且b1=5,b2=7<b3,若數(shù)列{abn}是等比數(shù)列,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=-3x在區(qū)間[1,2]上的最小值是( 。
A.-9B.-6C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有一塊多邊形的菜地它的水平放置的平面圖形的斜二測直觀圖是直角梯形,如圖所示∠ABC=45°AB=2,AD=1,DC⊥BC,則這塊菜地的面積為.( 。
A.2+2$\sqrt{2}$B.4+2$\sqrt{2}$C.1+$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從含有8個個體的總體中抽取一個容量為4的樣本,則總體中每個個體被抽到的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋擲兩顆均勻的正方體骰子,所得的兩個點數(shù)中一個恰是另一個的兩倍的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.甲,乙兩人進行射擊比賽,每人射擊6次,他們命中的環(huán)數(shù)如下表:
5879106
6741099
(Ⅰ)根據(jù)上表中的數(shù)據(jù),判斷甲,乙兩人誰發(fā)揮較穩(wěn)定;
(Ⅱ)把甲6次射擊命中的環(huán)數(shù)看成一個總體,用簡單隨機抽樣方法從中抽取兩次命中的環(huán)數(shù)組成一個樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過0.5的概率.
注:$\overline{x}$=$\frac{1}{n}$(x1+x2+…+xn
S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(Ⅱ)判斷性別與休閑方式是否有關(guān)系?
P(k2>k)0.050.0250.0100.005
  k3.845.0246.6357.879
本題參考:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若圓C:x2+y2-2x-4y+m=0與直線x+2y-4=0相交于M、N兩點,且|MN|=$\frac{{4\sqrt{5}}}{5}$
(1)求m的值;
(2)是否存在直線l:x-2y+c=0,使得圓上有四點到直線l的距離為$\frac{{\sqrt{5}}}{5}$,若存在,求出c的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案